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SCALE Pilot Project Overview

Waterbodies in New York State are affected by climate change, including increasing air
temperatures, shorter winters, less ice cover, warmer and longer summers, more heatwaves,
more precipitation, and more severe storms. Lakes in the Adirondacks serve as particularly
sensitive sentinel indicators of climate change impacts on freshwater quality due to the quality
of historical monitoring programs, large geographic diversity across the Park, and relatively
limited impacts from other stressors, such as human land use. As lakes lie in the lowest point in
the landscape, they integrate changes that occur around them and accumulate records of
change over centuries time scales in their sediments, enabling the ability to measure and
understand climate change impacts.

Measuring the impacts of climate change on Adirondack lakes is critical to understanding and
forecasting future changes in freshwater quality. However, existing monitoring programs are ill-
equipped to quantify and track future climate change impacts. A new survey of current
ecological conditions is needed that leverages modern tools and technologies applied to a
statistically robust distribution of Adirondack waterbodies.

Efficiently and effectively conducting a Survey of Climate and Adirondack Lake Ecosystems
(SCALE) requires several antecedent steps. First, sampling a broad representative suite of lakes
and avoiding biased sampling requires understanding the distribution of lakes across the
Adirondacks. In turn, this necessitates creating a comprehensive compilation of historical data
sets and complementing this compilation with remote sensing and hydrodynamic modeling to
understand lake dynamics in areas with limited or no historical sampling. Second, there are
several tools and technologies that provide tremendous capability to collect large amounts of
data with single samples. However, these tools and technologies need some method
development to ensure quality data are produced applicable to biota and water chemistry in the
region.

Through this SCALE Pilot effort, researchers and field crews from the Ausable Freshwater Center,
City University of New York, Cornell University, Rensselaer Polytechnic Institute, and Syracuse
University collaborated to (1) conduct hydrodynamic modeling, remote sensing, and data
mining to identify and select lakes for SCALE field operations, and (2) develop and refine
methods, including field sampling plans, for carbon characterization, eDNA, and stable isotope
analyses to ensure quality data are collected. This SCALE Pilot report summarizes each of these
component efforts. In sum, these efforts have formed the foundation for a successful SCALE
field program that is slated to begin in summer, 2025.



Hydrodynamic Modeling

Overview and motivation

We completed hydrodynamic modeling of hundreds of Adirondack lakes to assess trends
in modeled lake thermal attributes, including lake summer surface water temperature, summer
bottom water temperature, and stratification onset, duration, strength, and breakdown. This
also includes assessment of how these thermal attributes vary with factors such as lake surface
area, depth, and clarity. We completed this work because these physical characteristics regulate
many important ecosystem properties in lakes, such as phytoplankton growth, dissolved oxygen
availability, carbon cycling attributes, and phosphorus release from sediments that are SCALE
priority topics. However, long-term data on temperatures at multiple depths in Adirondack lakes
are limited. Without such data it is difficult to assess how the changing climate has, and will,
impact lake warming and the resulting ecological effects. Through this effort, we used
hydrodynamic modeling to complement and extend long-term data sets to understand how lake
temperatures have likely changed in unmonitored lakes over time, how lakes are likely to
respond to future climate change scenarios, and what lakes are most sensitive to warming.
Understanding the hydrodynamic attributes and trends through time helps identify lakes for the
survey selection process by ensuring that we sample a lake population that contains a wide
range of temperature, mixing depths, and mixing durations.

Model description

We used Simstrat (Gaudard et al. 2019), a common, well-validated, open-source,
process-based hydrodynamic model, to simulate daily lake temperature profiles over a 42-year
period (1980-2022). Initially, we applied the Simstrat model using default parameterization
options available through the LakeEnsemblR R package (Moore et al. 2021). For each lake that
we simulated (n = 443, Figure 1) we used lake-specific data for latitude and longitude, surface
area, maximum and mean depth. Modelled lakes ranged from 5.2 to 46.6 m maximum depth
(1.1 - 15.4 m mean depth). The surface area of the lakes ranged from 4 to 831 ha, and were at
elevations between 137 and 877 m.
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Figure 1: Map of the Adirondack State Park (blueline) with points for the locations for 443
modelled lakes. Three towns are identified as points of reference in labelled blue open circles.

We further incorporated a time-varying light attenuation parameter based on either
observed Secchi depth, or a combination of Secchi depth and remote-sensing based water
clarity trend. For lakes in the Adirondack Effects Assessment Program (AEAP; n=23), water clarity
(Secchi depth) was available approximately annually over a period of ~20 years from the
adklakedata R package (Leach et al. 2018). The AEAP sampled 28 lakes approximately twice a
summer from 1994 through 2012 for water chemistry and plankton communities. For other
lakes, we combined Secchi depth observed in the 1980s and applied a linear change based on
the trend estimated by remote sensing. We next converted Secchi depths to diffuse attenuation
coefficients (Kq) using the equation Ky = 1.7/Secchi depth. Secchi depth, as well as surface area
and max/mean depth were obtained from the Adirondack Lake Survey Corporation records
(Kretzer et al https://doi.org/10.6084/m9.figshare.22312732.v1). We also approximated the
bathymetry using the rLakeAnalyzer package with the Voldev method parameterized with

maximum depth, mean depth, and surface area (Winslow et al. 2019). Each lake model was
driven by hourly meteorology data obtained from ERAS5 reanalysis (Hersbach et al. 2020). ERA5
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weather data are available at a 0.25° x 0.25° grid, and we used the grid cell whose centroid was
closest to each modelled lake.

From each lake model’s output, we used the temperature profile to compute mean
epilimnetic temperature, mean hypolimnetic temperature, thermocline depth (as the center of
buoyancy), and the strength of stratification (as Schmidt stability). Each of these values were
calculated using functions from the rLakeAnalyzer R package.

Model performance

Using temperature profile data from AEAP lakes we validated the method of using
primarily default parameters by comparing observed temperatures against modelled
temperatures. We did this by calculating the root mean square error (RMSE). We were able to
simulate temperature profiles for 23 of the 28 AEAP lakes, because we restricted modelling to
lakes that were at least 5 m deep. Ten of the 23 lakes had a RMSE < 2.5 °C which represents a
reasonable fit to observed data. For comparison, a larger study of 1137 lakes using similar
methods for the General Lake Model (GLM) resulted in an RMSE of 2.7 across all depths
(224,812 measurements). Overall RMSE in our simulations ranged from 1.5 to 8.8 for each lake,
with a larger range in error values in shallower lakes (Figure 2). This shows that the model
performs well in larger, deeper lakes, but there is greater uncertainty in modeling temperature
in shallow lakes.

12
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Figure 2: Error in modelled temperature for AEAP lakes by mean depth using default
parameterization of the General Lake Model (GLM), Simstrat, and the mean prediction of both
models (ensemble_mean).

Modeling Results

Our model results show that summer surface water temperatures are significantly
increasing throughout the park (Figure 3). A mixed effects model with a fixed effect of year and
random effect of lake showed that on average summer epilimnetic temperatures increased by
0.04 °C per year. In many deeper lakes, particularly those greater than eight meters,
hypolimnetic water is getting colder (Figure 4). Changing water clarity also had an apparent
effect on epilimnetic temperature and thermocline depth measured as center of buoyancy
(Figure 5). Reduced water clarity resulted in warmer surface water, and shallower thermoclines.
We did not find an impact of water clarity trend on Schmidt stability.
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Figure 3: Mean summer epilimnetic water temperature across 443 Adirondack lakes.
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Next steps

Lake temperature modeling will provide context to the survey results we find and
complement the manually collected data from the survey to better understand the factors
shaping the physical, chemical, and biological attributes of Adirondack Lakes. We anticipate
updating the models when new calibration and validation data are obtained (i.e. following the
first year of high intensity sampling) to improve modeling accuracy and extend survey results to
other unsampled lakes across the Adirondacks. We plan to write up the results of our modeling
and submit them to a peer-review journal.

Data availability

All data used in hydrodynamic modeling is from publicly available sources. Code and data used
to generate the hydrodynamic modeling simulations are available on GitHub at:
https://github.com/ADK-SCALE/lake hydrodynamics.

Remote Sensing

Overview and motivation

We used satellite remote sensing data to analyze and understand changes that have
occurred in Adirondack lakes over the past four decades, particularly for lakes where monitoring
data does not exist. The remote sensing data comprises spectral responses from the Earth's
surface and the atmosphere, captured across various spectral bands that differ in radiometric,
spatial, temporal, and spectral resolutions. The primary use of these datasets has been to
predict lake surface temperature and lake chlorophyll concentrations. Lake surface temperature
is a primary regulator of many ecological attributes, and chlorophyll concentrations are an often
managed-for water quality criterion. High chlorophyll can also be related to the presence of
harmful algal blooms. Understanding seasonal, spatial, and long-term patterns in lake
temperature and chlorophyll across the park informs SCALE lake selection for field work and
helps generalize findings from field work to the broader region, and ultimately across all of New
York State.

Lake temperature overview

The main purpose of conducting remote sensing research on Adirondack lakes
temperature is to assess warming rates in small lakes, many of which are undergoing browning.
Lake browning refers to the process where lakes and other freshwater bodies become
progressively darker in color over time. This phenomenon is mainly due to an increase in
dissolved organic matter (DOM), especially dissolved organic carbon (DOC), often originating
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from soils, wetlands, and decaying vegetation in surrounding catchments. Browning affects lake
heat budgets and complicates the prediction of warming rates based on air temperature trends.
The second purpose of this work was to evaluate seasonal heterogeneity in lake warming rates,
which is poorly understood but has major biological and ecological implications.

Here, we investigate the capabilities and applications of multiple satellite platforms in
understanding surface water temperature changes across 135 small lakes in the Adirondacks. By
integrating these satellite observations with existing field data, we examined surface water
temperature variability during ice-free seasons since 1984. Satellite-derived water surface
temperature estimates were evaluated and validated by comparing them with near-surface
water temperature measurements at selected lakes across the Adirondack Park. In addition, we
assessed monthly temperature changes to identify trends and seasonal variations.

Data from the Landsat series of satellites, managed by the United States Geological
Survey (USGS), and MODIS (Moderate Resolution Imaging Spectroradiometer) observations
from NASA represent a comprehensive temporal record with extensive spatial coverage, vital for
studying all lakes within the Adirondack region. Sentinel-2 data, provided by the European Space
Agency (ESA), complements this with its high spatial resolution imagery. Landsat and
Sentinel satellites offer a revisit time of 12 to 16 days, with spatial resolutions of 30 meters and
20 meters, respectively. MODIS provides coarser resolution imagery (1 kilometer) but has the
advantage of daily observation frequency, allowing for more frequent monitoring. Analysis of
these satellite data is critical to understand wide-spread environmental changes occurring
across Adirondack lakes.

Lake temperature algorithm development overview

We employed multi-platform imagery with different spatiotemporal coverage to analyze
land and lake surface parameters. We performed the analyses at the individual lake level as well
as across the entire Adirondack Park region (including both lake and water areas). Although
more advanced satellites are in orbit, the Landsat series and the MODIS satellite have the
advantage of a multi-decadal record which partly coincides with the time-period of the field
data.

MODIS onboard AQUA satellite provides regional scale, high temporal observations from
2002-present at 1 km spatial resolution (Wan, Hook and Hulley 2015). AQUA, deployed in May
of 2002, overpasses a single tile of the MODIS sinusoidal tile grid at the equator twice daily at
1:30 AM and PM solar time. We extracted cloud-free MODIS daytime surface temperature
within the boundary of the Adirondack Park. While nighttime temperatures were determined to
be more reliable for climate studies (Zhang et al. 2018), we used daytime temperatures to better
correspond with Landsat observations and field measurements. This choice may introduce
higher uncertainty in trend detection compared to nighttime LST, which is generally considered

17



more reliable for climate studies, but ensures stronger consistency across datasets and
facilitates direct validation of surface temperature observations. Cloud-free values from the
MYD11A1 daily product (Wan, Hook and Hulley 2015) were used to eliminate anomalous results
likely caused by clouds or atmospheric disturbances.

For each lake we extracted Landsat 5 (1984-2011) and Landsat 7 (1999-2024) data,
taking only images with less than 15% of clouds, and then passing them through an additional
cloud filter to remove all cloudy or shadowed pixels from the lake area. We used the USGS
Collection 2, Level 2 Tier 1 Land Surface temperature product, as it is consistent over the
Landsat series. We extracted satellite temperature estimates via the Google Earth Engine
Python API, which maintains an extensive archive of Landsat data spanning over four decades.
Our analysis leveraged Landsat surface temperature data derived from 30 m resolution
products, targeting the deepest part of each lake with a 3x3 pixel area; a standard method in
such studies (Ritchie, Cooper and Yongging 1987; Dyba, et al. 2022). This technique helps reduce
resampling errors and uncertainties, especially in areas with complex terrain. All nine
temperature readings after excluding ice, cloudy, and shadow pixels from both Landsat 5 and 7
were averaged along with their timestamp information for each lake. We used the mean of the
nine pixels for each lake, after testing confirmed negligible differences between mean and
median values.

Lake temperature field data

We identified 135 lakes (Figure 6) to use for validation and calibration of satellite
temperatures based on the availability of data collected through the Citizens Statewide Lake
Assessment Program (CSLAP) (https://dec.ny.gov/environmental-protection/water/water-

quality/sampling-activities) and the Adirondack Effects Assessment Program (AEAP). 113 lakes

were selected from the CSLAP program for the study, the surface areas range from 0.1 to 115.6
km?2. In addition, 22 lakes from the AEAP over the period 1994-2012 were used. The surface
areas for these lakes ranged from 0.06 to 0.9 km.
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Figure 6. Map showing the boundary of Adirondack Park with the locations of AEAP and CSLAP
lakes included in this study.

Satellite lake temperature estimate validation

One of the primary goals of this study is to validate satellite-derived water temperature
data against in situ measurements of near-surface water temperature to ensure their accuracy
for long-term monitoring of temperature trends. We conducted separate analyses for each
satellite to evaluate the consistency of their performance over time. The time series from
satellite data were compared to corresponding in situ observations to assess their reliability for
climate studies in aquatic ecosystems. Due to the limited number of same-day measurements
between Landsat 5 or 7 flyover dates and the existing field data, we allowed for a three-day
window on either side of the field data date to find satellite matches. When calculating slopes
for validation, only satellite images matching the specific dates were used, not all images within
the month.

We compared satellite temperatures to field measurements in two ways: by comparing
satellites to each other (harmonized) and by comparing satellite data with field data. First, we
compared Landsat 5 and 7 to evaluate the continuity of the Landsat Temperature product.

There was reasonable agreement between measurements of the same lakes by both satellites,
generally taken within a day or two of each other (Figure 7). To avoid the ice season, we only
assessed data from March to November, though some measurements from both satellites still
recorded temperatures below freezing. Measurements were strongly correlated (r = 0.95) with a
bias of 0.52°C, indicating strong agreement with some discrepancies likely due to differences in
observation dates.
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Figure 7. The Bivariate distribution of L5 and L7 lake scenes temperature estimates within 3 days
of each other.

We also compared the field measurements of water temperature at depths close to the
surface from CSLAP and AEAP with satellite-derived water surface temperatures from Landsat 5
and 7. Both Landsat 5 and 7 generally showed good agreement with the field measurements
despite uncertainties related to location, date, and depth variations (Figure 8). Landsat 5 had a
slightly better correlation (r = 0.77) with field measurements compared to Landsat 7 (r = 0.71).
The RMSEs for Landsat 5 was 1.9°C and 1.7°C for Landsat 7 when compared to field
measurements. We also observed a higher correlation (r = 0.9) between field and satellite
temperature estimates when focusing on the 80 Lake Classification Inventory lakes (LCI, NYS
DEC’s professional lake monitoring program, https://dec.ny.gov/environmental-
protection/water/water-quality/monitoring), with a better RMSE value of 1.1°C. This improved
correlation may be due to the different methods of field data collection between the citizen
scientist and professional monitoring lake programs.

The accuracy and reliability of satellite estimates can be enhanced by using advanced
monitoring protocols such as in-situ probe data collection, which have more refined reporting
than field thermometers.
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Figure 8. Scatter plot of lake water temperature from CSLAP and AEAP field measurements at
depths close to the surface versus satellite-based water surface temperature from Landsat 5
(left) and Landsat 7 (right).

Field measurements were point surface temperature measurements while
corresponding satellite temperatures were spatial averages over a 3x3 pixel area (8100 square
meters). Additionally, differences between exact surface temperatures (sensed by satellites) and
field measurements at depths up to 1 meter may contribute to uncertainties. CSLAP lake
measurements often come from the deepest point, while AEAP samples are taken near lake
outlets. We estimated lake temperatures from the 3x3 grid of the nine pixels closest to the
deepest point to avoid land contamination. This may introduce uncertainties for AEAP lakes, but
our statistical analyses showed minimal spatial variation in these lakes' temperatures.

Lake temperature trends

We analyzed the long-term temperature trend for each lake using Landsat 5 and 7 data,
and field measurements. Trends were calculated separately using linear regression for monthly
and seasonal data, with particular emphasis on the summer months and the transition period
from spring to fall. For both the seasonal/monthly and annual analyses, we included all data
points from March to November to capture the full range of temperature variability during the
ice-free seasons. A similar methodology was applied to a broader study of the park using MODIS
data, with the exception that trends were computed individually for each pixel. Trends for each
month of the year were also determined for all pixels across the park.

Monthly temperature trends derived from Landsat 5 and 7 observations across 135 lakes
in the Adirondack were often variable (Figure 9). December, January, and February were
omitted due to their higher p-values, suggesting an absence of consistent trends, likely caused
by limited ice-free observations and potential ice-related distortions in temperature
measurements. The shoulder months of March and November had more prevalent cloud cover
resulting in fewer data points available for trend analysis. The Landsat 5 trends, during 1984-
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2012, were generally higher compared to Landsat 7's 1999-2023 period, except for May and
November.

Lake Temperature Trends

N L5
. L7 - 6
—— Trend/Decade (MODIS)

Degree °C/decade
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Degree °C/decade (MODIS)

Month

Figure 9. Distribution of temperature trends from Landsat 5 and 7 observations for each month
across all lakes. The solid red line represents the average monthly trend for the entire
Adirondack Park from 2002-2022, derived from MODIS LST estimates.

Park-wide trends in land surface temperature, derived from MODIS data across both land
and water areas, showed positive tendencies consistent with those observed in Landsat 7 data
over a similar time-period. These trends ranged from -1.57°C and 1.20°C for April and November
and varied between -0.10 to 0.79°C for other months. The comprehensive trends for the park,
represented by MODIS, were lower than those observed by Landsat, potentially due to the
differences in spatial resolution, observation frequency, and that MODIS reflects all surfaces
including top of the canopy temperature (not soil temperature) rather than the direct water
surface temperatures measured by Landsat.

Data from all three satellites (Landsat 5, Landsat 7, and MODIS) showed faster warming
in May and October compared to the core summer months, consistent with research suggesting
a lengthening of the warm season in lakes globally (Woolway 2023). This trend may indicate an
extension of the warm season, with earlier ice melt and the onset of lake stratification in May.
The significant warming observed in October suggests that stratification may persist later into
the season as well, reinforcing the idea of a prolonged warm period.

We assessed temperature trends of an extended summer (May — Oct), core summer
(June — Aug), and annual (Mar — Nov) periods for 30 selected lakes with more than 2 km? area
(Figure 10). Results based on Landsat 5 showed high and consistently warming trends for all
periods. However, annual trends from Landsat 7 alone indicate both cooling and warming. Using
data from both satellites, we found a warming trend for all seasons. It's important to consider
potential biases arising from the differences between Landsat 5 and 7 including variations in
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sensor configurations, spatial resolution, and radiometric resolutions. These factors may

account for the distinct trend values observed from the two sensors.
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Figure 10. The slope of a linear regression of water surface temperature variability over specific
seasons during the available time. Top panel) Landsat 5 only. Middle panel) Landsat 7 only.

Bottom panel) Combined Landsat 5 and 7 to create an overall trend for the past 40 years. 30

lakes with an area of more than 2 km2 are selected. Lakes are in order from smallest to largest

(left to right).

We further assessed the overall temperature trend for the ice-free season, typically the
period from May 1st to November 30th. Based on combined Landsat 5 and 7 data from 1984 —

2023 we found an average increase of 1.11 °C per decade across the 135 study lakes (Figure 11).

Our analysis included outliers, such as temperatures below zero degrees Celsius, that were likely

because of unflagged ice pixels.
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Figure 11. The Boxplot of lake water surface temperature of the selected 135 lakes for May to
November from 1984 to 2023 using Landsat 5 and 7 and the overall trend line.

Most lakes had trends around 1 degree per decade, although some had negative trends.
The park-wide trend, as indicated by MODIS data, showed an overall increase of less than 1
degree Celsius per decade. Notably, the southern part of the park demonstrated slightly higher
warming trends compared to other regions (Figure 12). We also analyzed air temperature
variations and trends using data from the Saratoga Lake station, provided by NOAA's National
Centers for Environmental Information (National Centers for Environmental Information n.d.).
The results showed that regional air temperatures increased by 0.44°C per decade. Interestingly,
this suggests that lakes in the area are warming even faster than the surrounding air. The results
of this work are under review for a journal publication (Azarderakhsh et al., Under Review).
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Figure 12. The May-October trend of Landsat 7 data overlaid on MODIS LST trend for the entire
Adirondack Park Boundary and selected lakes.

Lake chlorophyll a concentrations overview

Chlorophyll a (chl-a) is an often-used proxy to characterize the productivity or algal
biomass of a lake or other waterbody. There are existing empirical models to estimate chl-a
based on satellite spectral bands. However, a key limitation of existing empirical models for chl-a
retrieval is their lack of transferability across regions. Current empirical models are mainly
developed for water bodies with high chl-a concentrations, while majority of the lakes in the
Adirondacks have very low chl-a and appear very dark in optical satellite surface reflectance. As
demonstrated by Boucher et al. (2019), empirical models developed for specific study areas
often fail to perform effectively in other regions due to variations in optical properties and
environmental conditions. This highlights the need for more robust and adaptable approaches,
such as machine learning models, which can capture the complex dynamics of water quality
parameters by incorporating a wider range of remote sensing bands and characteristics.

Machine learning models, primarily random forest regression, have shown promise in
outperforming traditional band-ratio and spectral shape methods, offering greater flexibility and
accuracy in chl-a estimation. While previous studies have made significant strides in remote
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sensing of harmful algal blooms (HABs), several critical gaps remain. First, the focus on large
lakes (>10 km?) and coarse-resolution imagery (e.g., Sentinel 3 at 300 m) limits the applicability
of these methods to smaller water bodies, which constitute most of the lakes in the
Adirondacks (Schroder et al., 2024). Second, existing approaches often rely on HAB-specific
indicators like phycocyanin, which, while useful for identifying blooms, do not provide a
comprehensive understanding of chl-a dynamics across the entire bloom season, including its
development, peak, and decline.

Third, many studies lack the integration of multi-sensor data (e.g., combining Landsat and
Sentinel 2), which could enhance temporal resolution and improve monitoring capabilities
(Pahlevan et al., 2019). Additionally, the application of advanced atmospheric correction
techniques to improve the accuracy of chl-a retrievals in small lakes remains underexplored.

We began to address these gaps by using Landsat 8 and 9, as well as Sentinel-2 fine-scale
imagery, combined with non-optically active predictor variables, to create a statewide model of
chl-ain New York’s inland lakes. We then applied a robust atmospheric correction over aquatic
surfaces on the raw satellite imagery above as the existing surface reflectance product, Land
Surface Reflectance Code (LaSRC), available on USGS platform, are developed for land. By
focusing on all lakes across the state, rather than just those in the Adirondacks, we were able to
increase the amount of training data and thus develop a more robust algorithm that could later
be applied to remote sensing observations in the Adirondack region. A constellation of satellites
further improves the temporal resolution of our overall dataset. By using Landsat 8 and 9 and
Sentinel-2 (30 m and 10 m, respectively), we could include lakes as small as 0.04 km? and
increase the frequency of observations. Our primary goal was to explore machine learning
methods suitable for estimating chl-a concentrations in Adirondack lakes.

Lake chlorophyll a field data

We used the LAGOS-NE dataset to select lakes in New York larger than 0.04 km?
(Soranno, Bacon et al. 2017). Above 0.04 km?, lakes will contain enough pixels (>45) from the
Landsat 8 & 9 and Sentinel-2 satellites to execute algal bloom analysis. We compiled data from
lakes in New York with in-situ chl-a data from open-source data repositories including the
Citizens Statewide Lake Assessment Program (CSLAP), United States Geological Survey (USGS,
2016), observatory buoys in Lake Chautauqua (Table 1). Chl-a data was joined to the filtered
lakes greater than 0.04 km? resulting in 347 unique sites on which to train the model (Figure
13).

Table 1. In situ data sources and their respective start/end dates, coverage, and citations.
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Data Source Date Number of | Citation
sites/lakes
NYSDEC 2011 | 687 lakes DOW, Bureau of Water Assessment and Management. URL accessed
monitoring - 2023:
programs 2022 https://dec.ny.gov/environmentalhttps://dec.ny.gov/environmental-
protection/water/water-quality/monitoringprotection/water/water-
quality/monitoring
USGS National 2018 | 338 sample | USGS, 2016. URL accessed 2023:
Water Quality - sites https://www.usgs.gov/labs/national-water-
Laboratory 2021 qualityhttps://www.usgs.gov/labs/national-water-quality-
laboratorylaboratory
450N VCornwaII _ MissisquOi. — — — —— ——
v P e —— e . Qtional
) e 8 o °owMliife Refuge
So Legend : s ot 6- P J N
© Lakes with chl-a data . 7 Montpeli
. Belleville ite
ol * Unmonitored lakes Mo(ijrnetea,:ns NG
= New
| Toronto Lake Hampshirg
Kitchener T Ontario 70l g
OHam|ltonSt . f’Cﬁﬁ ~o M’. ‘} Jon
dlga ° 6“‘1 % reen
f ..° .. .. o v &% Mguntam
43°N— %&0 » Na(lonal Forest
0'.- . g;. ’ y o
< ° o‘o Py
e \' o,
Erle g ‘.91 % 9,.00. OSpringﬁeld
42°N L} ‘@0'"’ - '. -
OHartford o
Naﬁgi%\iz{est OWaterbury Rhode Is
gstown OBridg(/gfng‘dn "'
41°N— R EE ,@:30’
| |
0 140 280 OAIIentown eaie o:;ov.s Yidlife Refuge
L . ‘

—
80°W

| ; |
79°W 78°W

| J | | | ) |
77°W 76°W 75°W 74°W 73°W 72°W

Figure 13. The New York lakes study region, depicting lakes with in-situ Chl-a data (pink, n = 349)
and unmonitored lakes (black, n = 4461).
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Satellite data processing for lake chlorophyll

The Landsat 8 & 9 Operational Land Imager (OLI) and Sentinel-2 Multispectral
Instrument (MSI) imagery are accessible via Google Earth Engine image collections. The Landsat
OLI satellites have a revisit period of 16 days and collect data on 8 spectral bands at 30 m spatial
resolution, and we used the coastal aerosols, visible light, and near infrared (NIR) bands (1-5).
We filtered the Landsat OLI raw image collections to summer months (May 1 - September 30)
from 2013 — 2022 and included Landsat 9 imagery beginning in 2021. Sentinel-2 MSI has higher
temporal, spatial, and spectral resolutions of 5 days, 10 m, and 13 spectral bands, respectively.
Of the 13 bands, we used the first nine ranging from coastal aerosols to NIR. We compiled
Sentinel-2 raw imageries for the summer months from 2019 — 2022 corresponding with data
availability from the s2cloudless imagery in North America.

Due to inland water bodies’ optically complex and dark features, utilizing a water-based
atmospheric correction provides more accurate chl-a reflectance values than imagery corrected
with standard land-based corrections. All three image collections were pre-processed with the
Modified Atmospheric correction for INland waters (MAIN) (Page, Olmanson and Mishra 2019).
This algorithm accounts for the complexity of small inland waters with high turbidity, chl-a, or
other colored dissolved organic matter (CDOM).

We calculated median band values from buffered sample location points using zonal
statistics and a 60 m buffer. Band statistics were matched with chl-a samples by lake name and
sample date, and we allowed for a capture date matchup of + 7 days to increase the size of our
training dataset.

Machine Learning Modeling

We implemented nonlinear machine learning models that ranked highly including Extra
Trees Regression (ETR), Support Vector Regression (SVR), Random Forest Regression (RFR), and
Gradient Boosted Regression (GBR) to predict chl-a concentration over the lakes with existing
training data. For all model iterations, we split the data for training and testing, with 80% of the
data being randomly selected for training and the remaining 20% used for testing. For RFR, GBR,
ETR, and SVR models, we used a 500-iteration random search to optimize the results.

We executed additional model optimization testing various combinations of input
variables and subsetted chl-a. Input variables for each model included all Landsat 8 & 9 (bands
1-5), Sentinel 2 (bands 1-8a), and additional water characteristics variables such as percent of
developed area and lake size. We used the National Land Cover Database (NLCD) 2019 to derive
the percentage of inter-watershed agricultural and developed land (Dewitz, 2021). Furthermore,
we ran each model with select variables (e.g. only Landsat bands, only Sentinel 2 and
morphology, Landsat and Sentinel 2, etc.). Finally, we split the dataset into low and high
concentrations, analyzing the performance of a low chl-a model versus high chl-a model (low
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chl-a < 15 pg/Il, high chl-a > 15 pg/l). Performance was assessed using coefficient of
determination (R?), root mean squared error (RMSE) and mean absolute error (MAE) to assess
model strengths and weaknesses compared to statewide ground-based measurements.

Results — Lake chlorophyll

Model results indicated that ETR, RFR, and GBR performed similarly well, with R > 0.60
(Table 2). Overall, we found that ETR, RFR, and GBR performed similarly, and they performed
consistently better than the SVR model with R?values of 0.72, 0.68, 0.51, and 0.18, respectively.
Additional testing of the ETR model indicated that the incorporation of non-optical features
substantially boosted performance (R? 0.48 to 0.72) with the best output including all tested
variables.

Table 2. Model iteration results with satellite combinations and features; Km? = lake surface
area, National Land Cover Database (NLCD) = percent of interwatershed agricultural and
developed land.

Trial R? RMSE MAE

ETR L8/9 + S2 0.48 11.14 6.04

ETR L8/9 + S2 + Km? 0.60 9.76 5.23

ETR L8/9 + S2 + NLCD 0.71 833 4.10

ETRL8/9 + Km?+NLCD 0.57 9.95 4.89

ETR S2 + Km? + NLCD 0.71 8.49 4.10

ETR All 0.72 819 3.97
RFR All 0.67 893 4.82
GBR Al 0.51 10.80 6.16
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We implemented a permutation importance analysis to determine which of the input
variables are most influential in the ETR model’s decision making (Figure 14). The results of this
analysis indicate that the non-optically active input variables, morphology and percent
developed land, hold the most weight in the model. The spectral bands with the most influence
are the green (560 nm) band, red (665 nm) band, and NIR 703 nm. Variables noted to have a
strong influence in previous studies, NIR 864 nm and NIR 740 nm, ranked lower, indicating that
they are not significant influential indicators of chl-a concentrations. The results of this work are
planned to be published in a journal manuscript (Greene et al., under preparation).
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Figure 14. Permutation importance analysis plot for the best performing ETR model with five
spectral bands from Landsat 8 & 9, Sentinel 2, morphology, and NLCD (agriculture and
developed land) variables.

Next steps

This pilot study established a foundation for more extensive future study. The findings
from this research demonstrate the effectiveness of satellite data for long-term monitoring of
lake temperature and chlorophyll-a dynamics and inform broader ecological and climate studies
in the region.

There are several next steps for remote sensing of lake temperatures. First, to
understand temperature trends across the Adirondack region it is important to expand the
scope of study. Building on the pilot analysis of 135 lakes, it will be important to incorporate the
more than 1,200 additional lakes in the Adirondacks that currently lack consistent field
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measurements. Since it is not practical to collect field data for every waterbody, the next step is
to develop and refine models that can accurately extrapolate temperature conditions across this
broader set of lakes using remote sensing observations. Additionally, it is important to expand
the scope of this work beyond average surface temperature trends, to understand within-lake
temperature gradients and how they vary spatially. Understanding these finer-scale differences
can reveal important ecological patterns and identify areas of rapid change.

New data sources will improve remote sensing algorithms. First, data from Landsat 8 and
9, as well as other emerging sensors with higher temporal and spatial resolutions, can be used
to obtain more remote sensing imagery. This will expand capacity to track rapid changes and fill
any observation gaps in the existing Landsat record. Next, enhancing the validation of satellite
products with new ground observations during the SCALE field sampling effort will improve
algorithms. Deployment of infrared imaging technology to capture near-surface water
temperature measurements will improve temperature algorithms and further quantify the
accuracy and reliability of satellite-derived estimates. It will also be important to incorporate
remote sensing techniques to analyze the timing of ice-on and ice-off events, as well as explore
how changing freeze-thaw cycles influence overall lake stratification and warming rates. This will
provide insights into broader ecological shifts tied to climate change.

There are several next steps for remote sensing of lake chlorophyll concentrations. First,
a comprehensive model has yet to be established. Building on our initial statewide modeling,
SCALE field work can help provide targeted validation efforts specifically for Adirondack lakes.
This will help refine our model parameters to ensure accuracy in optically complex water bodies
typical of the region. Once validated, the best-performing model will be run for all lakes in the
Adirondacks. This effort will provide a comprehensive snapshot of Chl-a concentrations across
the region, laying the groundwork for long-term monitoring and trend analysis.

Once a successful model is well validated it is possible to understand how chl-a
concentrations have changed over time. This involves examining historical satellite data to
detect potential trends—such as increasing or decreasing chl-a—over the period of satellite
records. Additionally, once chlorophyll estimates are available it may be possible to evaluate
environmental and anthropogenic variables—such as land use, watershed characteristics, and
climate drivers—to identify factors that may contribute to elevated chl-a levels. Next, remote
sensing can be used to assess spatial variability in chl-a estimates across larger Adirondack lakes
by mapping and analyzing pixel-by-pixel results. This qualitative evaluation will help us
understand within-lake heterogeneity, identify potential hot spots of higher Chl-a, and
determine how effectively our model captures these variations.

Another key next step to increase accessibility and transparency of the SCALE project
would be to create an interactive web map that visualizes lake temperature trends, lake
chlorophyll concentrations, and other key findings. Users will be able to explore individual lakes,
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view time-series data, and compare trends across the Adirondack region. Users will be able to
visualize spatiotemporal patterns, query individual lakes, and download relevant data.

Data availability

Data used for remote sensing research includes satellite products and in situ data. Both satellite
data and the in-situ data used in this study are publicly available. Data outputs from this study
will be publicly available following review for publication (Azarderakhsh et al., Under Review),
(Greene et al., under preparation).

Data mining

Overview and motivation

We conducted a thorough examination of historical data to understand the variation in
lake water quality attributes across Adirondack lakes. This work was undertaken as a key step in
the lake selection process for SCALE. Because only a small subset of Adirondack lakes can be
sampled in a survey it is critical that we first understand patterns in water quality attributes so
that survey teams avoid potential bias during field data collections. The data mining process is a
critical step in the lake selection process for SCALE field operations.

Data mining process

The data mining work proceeded in several stages. First, we obtained data on the surface
area, location, and total number of lakes using the (U.S. Geological Survey n.d.; Viger et al.
2016). The NHD provides information on rivers, streams, lakes, ponds, and more throughout the
United States. In that dataset there are over 160,000 waterbodies in New York or adjacent
watersheds draining into New York. Within the Adirondack State Park there are 11,200 lakes and
ponds of varying shapes and sizes (Figure 15). We next accessed and compiled data from
historical datasets. Lakes in the Adirondack State Park have been the subject of numerous
studies over the past 45 years.
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Figure 15: A map of lakes and ponds in the Adirondack State Park based on the National
Hydrography Dataset.

Historical data review

The wealth of historical data available for Adirondack lakes provides a valuable baseline
for comparison to present-day values and insight into the distribution of water quality variables
throughout the Park. We identified nine large scale surveys of lakes and ponds in the park
covering different periods of time (Table 3). Each survey has good spatial coverage of the park
(Figure 16), except for the Adirondack Effects Assessment Program (AEAP) which focused on the
Southwest side of the Park thought to be most heavily impacted by acid rain.

Table 3: Number of lakes sampled by different programs in the Adirondack State Park

Sampling program Number of lakes sampled Years
Adirondack Lake Survey (ALS) 1469 1984-1987
Adirondack Effects Assessment Program 28 1994-2012
(AEAP)

EPA Temporally Integrated Monitoring of 41 1991-2010
Ecosystems (TIME)

NY DEC Citizens Statewide Lake Assessment 51 1986-2012
Program (CSLAP)

Eastern Lake Survey (ELS) 173 1984-1986
EPA Environmental Monitoring and | 70 1991-1994
Assessment Program (EMAP)

NY DEC Lake Classification Inventory (LCI) 86 1981-2010
Adirondack Long Term Monitoring (ALTM) 54 1992-2012
Adirondack Lake Assessment Program (ALAP) 228 1997-2024
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Figure 16: Lake locations within the Adirondack State Park sampled by various monitoring
programs as well as those sampled in the SCALE Pilot studly.

In total we found 1,721 lakes and ponds that have been previously sampled in the
Adirondack State Park. However, due to idiosyncrasies in naming conventions this number
becomes 1,598 unique waterbodies in the NHD. For example, several larger lakes have unique
identifiers from the 1980s survey for different subbasins.

Much of the available data from the Adirondack sampling programs were compiled as
part of LAGOS-NE-LIMNO (Soranno et al. 2015; Soranno et al. 2017). Other data were available
from the Adirondack Lake Survey Company (Kretzer et al
https://doi.org/10.6084/m9.figshare.22312732.v1). Data from ALTM and the 1980s ALS survey
were also available from EDI repositories (Roy and Dukett, 2017a; Roy and Dukett, 2017b). We
obtained additional information from reports published by the Adirondack Watershed Institute
for the Adirondack Lake Assessment Program (Laxson et al. 2018). All the data used in our
analyses are already publicly available, so no new data release is required to make the data

public.

Clustering

The 1980s Adirondack Lake Survey showed that lakes and ponds in the Adirondacks
come in many shapes and sizes and can have a large range in water quality. One of our primary
goals was to discover if lakes could be grouped together based on their water quality,
watershed, and morphometric characteristics. This step was undertaken so that we could later
ensure that all types (clusters) of lakes were sampled during SCALE field visits. To begin, we
conducted a Principal Components Analysis (PCA) using data from the 1980s lake survey.
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Variables included in the PCA covered water chemistry, lake shape (e.g., depth, area, volume),
and watershed characteristics (land cover). All variables were centered and scaled to units of
standard deviation prior to analysis.

The first two principal components explained about 25% of the total variation across the
lakes (14.5 and 11.7% respectively; Figure 17). Dissolved organic carbon (DOC), color, and total
phosphorus (TP) all correlated with wetland area in the watershed and wetland area adjacent to
the lake, as well as with watershed slope. Larger, deeper lakes were inversely correlated with
DOC and TP. Some lakes also had very high conductivity, acid neutralizing capacity (ANC),
dissolved inorganic carbon (DIC), and calcium. These higher conductivity lakes were largely
independent of the variation in DOC and TP.
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Figure 17: PCA biplot of lake characteristics in the Adirondacks. Colored circles and point shapes
indicate clusters identified through k-means. Large points show cluster centroids.
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We next assessed the clustering of lake properties using k-means (Figure 17). Using the
elbow method, identifying the point where the slope changes in a scree plot indicated that ten
was the optimal number of clusters. The number of lakes in each cluster ranged from 15 — 250
(Figure 18). Visual inspection of the spatial distribution of clusters indicated that the lakes in
each cluster were well-distributed across the park.

Figure 18: The distribution of lakes in each cluster identified following PCA of lake chemistry,
morphometry, geography, and watershed characteristics throughout the Adirondack State Park.

The spatial clustering results raised the question of whether there are spatial
relationships among lakes in terms of their water chemistry. We sought to determine if lakes
that are closer together geographically are more similar in water chemistry, or if similarity in
lake shape or watershed characteristics could explain similarities in chemistry. For each pair of
lakes, we computed the environmental, geographic, morphometric, and watershed distance.

Data mining results

Our goal was to select lakes at three levels or categories. The first category of lakes is
those that will be sampled approximately every three weeks throughout the open water season
for three years and have sensors installed for high-frequency monitoring. It is anticipated there
will be 10 lakes in this category. The second category of lakes are those that will be sampled
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approximately every three weeks throughout the open water season for a single season and
have sensors installed for high-frequency monitoring, for a total of about 30 lakes over three
years. In total between categories one and two we anticipate there will be a total of 40 lakes
that will have seasonally resolved data over the duration of SCALE. The third category of lakes
are single visit lakes. These lakes will be visited once over the duration of SCALE, with
approximately 75-100 lakes sampled each year and 250-300 over the three years anticipated for
the survey. In addition to these three categories of lakes there will be a small number of
additional lakes added to the survey as resources and collaborations permit. These include lakes
that are sampled routinely by other organizations where the sampling programs align
sufficiently with SCALE to permit them being added to SCALE (e.g., Lake George, Mirror Lake,
Cranberry Lake, and Upper Saranac Lake) with minimal additional resource investments.

Given the higher investment required for category one and two lake monitoring, we
sought to prioritize lakes for these categories that had a wealth of existing data available. Many
lakes in the Park have been studied for more than a decade and building on these datasets could
be valuable to better understand long-term trends and variability. We also sought to identify
representative category two and three lakes that were relatively easily accessible, given the
number of repeated visits that would be required for frequent sampling.

Selection for category two and three lakes began by creating a list of 78 lakes that have
been well-studied as part of the AEAP, ALTM, and/or ALAP, and have either long-term biological
data or relatively distinct characteristics based on clustering and lake types. We also included in
our list those lakes with some significance to the public, with some preference for lakes that also
had a history of sampling. There are 15 HUC8 watersheds in the park, and these 78 lakes are
spread across 13 of them. The two watersheds with no high-intensity lake candidates (Hudson-
Hoosic and Mettawee River) only have a small portion of their area within the park boundary.

Given the spatial distribution of high intensity sample candidates, we chose to select four
lakes for the multi-year intensive sampling effort from a regional cluster, and the remaining six
spread throughout the park (Figure 19). Using this approach, we expect to distinguish the
responses of different kinds of lakes to similar regional drivers (e.g., weather) as well as spatial
differences. The cluster is in the western part of the park and includes: Seventh, Sagamore,
Limekiln, Big Moose, Queer, Dart, Moss, Rondaxe, Cascade, Windfall, Squash, West, Constable,
and Lower Sister.

Many of these lakes were also part of the AEAP program, which means they have a lot of
biological data associated with them, in addition to the chemical and physical data from the
ALTM. We selected four lakes from this cluster: Sagamore, Queer, Dart, Squash. These four lakes
represent different clusters for trends in DOC and Color as well as covering most of the range for
DOC and TP and have distinct plankton communities. They also range from small to large, and
remote sensing data are available for all but Squash. The remaining six lakes include Little Echo
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Pond, Arbutus Lake, G Lake, West Caroga Lake, Garnet Lake, and Upper Ausable Lake. G, West
Caroga, Little Echo and Arbutus were a part of the ALTM, and Garnet Lake has also been

sampled as part of ALAP. These lakes range from 0.8 to 133 ha in area with maximum depths
from 4.6 to >22 m.

N
['L . @ lll
f'_L_______‘1 r
:i ton
L\
I . ‘\l
I .
— III ‘ a
[ . )
'3 | | r
1 | j
|| : | | II
| | | 3
¢~ |
d ’ f
s T |
._TJ | -—ll
] . | )
2 | ﬁl
2 g :
.-\--f--_a‘ '-/'\’/

Figure 19: Map of lakes where seasonally resolved measurements will occur, with blue for
multiyear, green for a single year.

For the single year seasonally sampled lakes (category two) we chose from the well
studied lakes to represent the distribution of lakes around the park. We first split the list into
each of the 13 HUC8 watersheds. Watersheds with more well-studied lakes had more lakes
included in the list of high intensity candidates. Lakes were chosen based on their position in the

distributions of watershed area, surface area, maximum depth, mean measured total
phosphorus, and mean measured DOC.
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Table 4: List of lakes selected for the first year of SCALE sampling (indicated by an “X” in the
column “yr1”). Here, “grp” indicates the group or category of lake, whether the lake will be

sampled every year of the survey (grp 1) or one year (grp 2). Grp 3 are those lakes that will be
monitored for a single year in years two and three. Grp 4 indicates those lakes where external
monitoring programs we are aware of may enable inclusion of this lake in SCALE with minimal

additional resource investment. Additional columns indicate the National Hydrography dataset

permanent identifier (NHDID), latitude (LAT), longitude (LONG), name (PONDNAMIE), elevation

(ELEV), watershed area (WAREA), surface area (SAREA), max depth (DEPTH), and 8 digit
hydrologic unit watershed name (HU8name).

yrl | grp | NHDID LAT LONG PONDNAME ELEV | WAREA | SAREA | DEPTH | HU8Sname
(m) | (ha) (ha) (m)
X 1 | 115353991 | 44.084 | -73.862 | UPPER AUSABLE LAKE 607 4119 61.7 14.6 | Ausable River
X 1 | 131843739 | 43.826 | -74.886 | SQUASH POND 648 41 3.3 5.8 | Black
X 1 | 131844150 | 43.793 | -74.871 | DART LAKE 536 | 10757 51.8 17.7 | Black
X 1| 53540671 | 43.414 | -74.633 | G LAKE 619 413 322 9.8 | Mohawk
X 1 | 53542311 | 43.132 | -74.491 | WEST CAROGA LAKE 443 1413 129.1 22.6 | Mohawk
X 1 | 132437639 | 43.814 | -74.807 | QUEER LAKE 597 155 54,5 21.3 | Raquette
X 1 | 132437679 | 43.766 | -74.628 | SAGAMORE LAKE 580 4946 68 22.9 | Raquette
X 1 | 129691062 | 44.309 | -74.356 | LITTLE ECHO POND 479 7 0.8 4.6 | Saranac River
X 89365829 | 43.519 | -74.022 | GARNET LAKE 448 2121 133 | NA Upper Hudson
X 1| 89362525 | 43.988 | -74.242 | ARBUTUS LAKE 513 365 48.2 7.9 | Upper Hudson
X 2 | 115353949 | 44.18 | -73.967 | HEART LAKE 661 63 10.7 16.8 | Ausable River
X 2 | 131844009 | 43.805 | -74.831 | WINDFALL POND 601 44 2.4 6.1 | Black
X 2 | 131842438 | 43.879 | -74.769 | UPPER SISTER LAKE 588 1409 32 3.7 | Black
X 2 | 131844637 | 43.745 | -74.782 i'ﬂrNLAKE FULTON 544 4837 43.6 11.6 | Black
X 2 | 53542015 | 43.189 | -74.499 | OTTER LAKE 503 361 14.8 4 | Mohawk
X 2 | 150679608 | 44.157 | -74.378 | FOLLENSBY POND 471 | NA 393 31.1 | Raquette
X 2 | 47723283 | 43.371 | -74.246 | WILLIS LAKE 397 139 14.6 2.7 | Sacandaga
X 2 | 132876321 | 44.705 | -74.136 | MOUNTAIN VIEW LAKE | 453 | 11474 97.1 2.7 | salmon
X 2 | 89362297 | 44.021 -74.22 | WOLF LAKE 556 673 56 | NA Upper Hudson
X 2 | 89362411 | 43.994 | -73.827 | CLEAR POND 583 601 70.4 24.4 | Upper Hudson
3 | 131845587 | 43.69 | -75.065 | GRASS POND 546 237 5.3 5.2 | Black
3 | 131844924 | 43.794 | -75.291 | PAYNE LAKE 375 42 7 6.7 | Black
3 | 131844064 | 43.811 | -74.883 | WEST POND 585 108 10.4 5.2 | Black
3 | 131845828 43.6 | -74.662 | BROOK TROUT LAKE 722 177 28.7 23.2 | Black
3 | 131844377 | 43.781 | -74.853 | MOSS LAKE 536 1315 45.7 15.2 | Black
3 | 131844719 | 43.756 | -74.916 | LAKE RONDAXE 524 | 14283 90.5 10.1 | Black
3 | 132876172 | 44.733 -73.97 | UPPER CHATEAUGAY 399 | 20856 1038 21.9 | ChateaugayEnglish
LAKE
3 | 132859255 | 44.24 | -74.658 | BOOTTREE POND 463 24 6.2 15.2 | Grass
3 | 92081293 | 44.747 | -73.824 | CHAZY LAKE 470 6896 746.6 21 | Lake Champlain
3 | 53542293 | 43.169 | -74.534 | WEST LAKE 470 5146 78.2 8.5 | Mohawk
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3 53542293 | 43.168 -74.523 | CANADA LAKE 472 9040 343 45.7 | Mohawk

3 | 133099412 | 43.961 -75.045 | LOON HOLLOW POND 607 60 5.7 11.6 | Oswegatchie
3 | 132433418 | 44.483 -74.74 | JOE INDIAN POND 394 5312 138.1 3.4 | Raquette

3 | 132437266 | 43.858 -74.45 | BLUE MOUNTAIN LAKE 546 2972 697 30.5 | Raquette

3 47726211 | 43.236 -73.989 | MINER MILL VLY 477 558 33 1.8 | Sacandaga

3 47724773 | 43.302 -74.585 | JOCKEYBUSH LAKE 599 149 17.3 11.3 | Sacandaga

3 | 129691051 | 44.312 -74.372 | EAST COPPERAS POND 479 15 3.6 6.4 | Saranac River
3 | 129690808 | 44.512 -74.125 | BIG HOPE POND 522 194 8.9 11.5 | Saranac River
3 | 129691004 | 44.337 -74.372 | MIDDLE POND 484 182 243 3.3 | Saranac River
3 | 135271335 | 44.432 -74.27 | LOWER ST. REGIS LAKE 494 4427 141.5 11.6 | St.Regis

4 | 115353807 | 44.289 -73.982 | MIRROR LAKE 566 301 50.5 18.3 | Ausable River
4 92083789 | 43.843 -73.432 | LAKE GEORGE 66 60347 | 11536.6 60 | Lake Champlain
4 | 133098825 | 44.165 -74.803 | CRANBERRY LAKE 453 37478 2795.9 11.6 | Oswegatchie
4 | 150563204 | 44.324 -74.322 | UPPER SARANAC LAKE 482 19580 1912 26 | Saranac River

To select potential lakes for inclusion in the single visit survey we began by analyzing
unique lakes within each watershed. We grouped lakes by cluster, lake type, and watershed.
Among these groups 108 included a single lake, 58 groups were lake pairs, and 143 groups had
more than 3 lakes. From the 58 pairs of lakes, if one was on public land and the other on
private, we selected the public lake resulting in 23 lakes selected. If both lakes were on public
land, we randomly selected one, giving an additional 20 lakes. Similarly, for groups with three or
more lakes we selected any public land lakes from groups where there was only one and
randomly sampled public lakes when there was more than one. Additionally, we included lakes
that represented surface area, watershed area, or depth outliers within clusters. Another 68
lakes were included to represent lakes with either more complex or simple shapes within
watersheds. For lakes not included in clustering analysis we assessed lakes within watersheds,
selecting a range of depths, mean measured DOC, mean measured chlorophyll g, and/or mean
measured total phosphorus. We additionally included 57 other well-studied lakes and 39 lakes
from the ALTM. Our final list of potential low intensity lakes included 500 lakes (Appendix A).

For the first year of sampling, we selected 100 potential lakes. Approximately half the
lakes recommended for the single visit survey list were not included in the clustering analysis, so
we chose 50 lakes from clusters and 50 from the non-clustered lakes. We randomly sampled
lakes from each of 5 larger clusters based on the relative number of lakes in each group. From
the non-clustered lakes, we randomly selected 50.

Next steps

The data mining process has been completed with the conclusion of the SCALE pilot
program. However, the lakes actually sampled during SCALE field operations may not exactly
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match the list of recommended lakes due to logistical challenges that may arise during field
work, such as the inability to access selected lakes. The data mining process recommended back
up/alternative lakes in case some lakes cannot be accessed.

Data availability

All data used in the historical data mining and lake selection process were publicly
available. Code and intermediate data used to generate the lake lists are available on GitHub at:
https://github.com/ADK-SCALE/lake_selection.

Carbon characterization

Overview and motivation

Widespread browning of surface waters in boreal and temperate regions of the Northern
Hemisphere has been documented through long-term monitoring of color and/or dissolved
organic carbon (DOC) over recent decades (Monteith et al. 2007; de Wit et al. 2021; Blanchet et
al. 2022). Lake browning has received growing attention for its effects on ecosystem function,
but the ways in which it alters carbon quality remain less well defined. Optical properties such
as UV absorbance and fluorescence are often used to infer Dissolved Organinc Material (DOM )
characteristics like molecular weight, aromaticity, and chromophore content, but their variation
across Adirondack lakes and influence on lake processes are not well understood. Moreover, the
relationship between these DOM attributes and photochemical reactivity, particularly the
formation of photooxidants like singlet oxygen (*02), remains unclear, despite its relevance to
biogeochemical cycling and contaminant transformation in sunlit surface waters.

Developing and implementing SCALE to understand lake browning requires improved
methods for characterizing carbon and assessing how variations in carbon quality influence key
processes. To address this need, we examined DOM characteristics and 0 production in 37
lakes within the Adirondack Long-Term Monitoring (ALTM) program sampled during three
periods: October-November 2022, May-June 2023, and September 2023.

Carbon characterization approaches

Carbon quality can be inferred from optical properties such as UV-visible absorbance and
fluorescence. For example, absorbance at specific wavelengths, normalized to DOC
concentration, yields specific UV absorbance (SUVA) that serves as an indicator of aromatic
content (Weishaar et al. 2003). Fluorescence measurements typically involve collecting
excitation-emission matrices (EEMs), which record the intensity of emitted light across a range
of excitation and emission wavelengths. Such fluorescence matrices can then be analyzed to
identify fluorescence components indicative of DOM sources and compositional features
(Fellman, Hood and Spencer 2010).
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In this work, EEMs were measured on water samples from 37 ALTM lakes using a Horiba
Scientific Aqualog spectrofluorometer. EEMs were recorded across an excitation wavelength
range of 240 to 650 nm in 1-nm increments and an emission wavelength range of 248 to 830 nm
in 2.33-nm increments. Optical indices, such as Napierian absorption coefficients (Cuthbert and
del Giorgio 1992), SUVA:s4 (the specific UV absorbance at 254 nm; indicating DOM aromaticity)
(Weishaar et al. 2003), E2:E3 (the ratio of Napierian absorption coefficients at 250 and 365 nm;
indicating DOM molecular size) (De Haan and De Boer 1987), fluorescence index (indicating the
relative abundance of microbially versus terrestrially derived DOM) (McKnight et al. 2001),
humification index (indicating the degree of humification) (Zsolnay et al. 1999), and freshness
index (indicating the presence of freshly produced DOM) (Wilson and Xenopoulos 2008), were
extracted from the absorbance and EEM fluorescence data using MATLAB.

Concurrently, we characterized the spatiotemporal patterns of apparent quantum yields of
singlet oxygen (102) for whole water samples collected from these lakes. 10, is a reactive oxygen
species ubiquitous in sunlit aquatic environments and plays a central role in the sunlight-driven
oxidation of DOM, as well as transformation of organic micropollutants (e.g., pesticides) and
biomolecules (e.g., cyanobacterial metabolites), among other processes (Ossola et al. 2021).
The 10, apparent quantum yield represents the number of moles of 10, produced per mole of
photons absorbed by the chromophoric fraction of DOM and serves as a key input parameter
for photochemical modeling (Partanen et al. 2021). Importantly, apparent quantum yields
capture changes in the intrinsic photoreactivity of DOM, which is governed by variations in its
composition rather than its concentration (i.e., DOC). Measurements of apparent quantum
yields offer a quantitative basis for predictive modeling of pollutant lifetimes in the sunlit
euphotic zone of lakes. To this end, we combined the apparent quantum yields of 0, with site-
specific solar irradiance modeled by the Simple Model of the Atmospheric Radiative Transfer of
Sunshine (Gueymard 1995; Gueymard 2001; Gueymard 2019) to estimate depthaveraged
steady-state concentrations of 10, in the euphotic zone for each ALTM lake. Our data will be
valuable to practitioners interested in estimating the environmental half-lives of 0,reactive
pollutants as well as to investigators assessing the natural attenuation capacity of ALTM lakes
and similar aquatic ecosystems.

Carbon characterization and photochemistry results

Characteristics of DOM quality varied across ALTM lakes and seasons, with higher DOC
concentrations generally associated with more processed, terrestrially sourced DOM of higher
molecular weight and greater aromaticity (Figure 20). Hydrogeological conditions of lake
watersheds (e.g., hydrologic connectivity and surficial geology) and seasonal variations in DOM
quality jointly shaped the spatiotemporal patterns of the apparent quantum yields of *02.
Overall, the apparent quantum yields of 'O, for headwater and chain drainage lakes were higher
than for seepage lakes, which is attributable to enhanced 'O, production by DOM with a greater
proportion of microbially derived components and smaller molecular sizes in drainage lakes.
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Furthermore, the apparent quantum yields of 1O, for thin till drainage lakes were higher than
for both medium till and thick till drainage lakes, as can be rationalized by the greater
contribution of upland runoff with shorter transit times (e.g., less DOM processing along the
terrestrial-aquatic continuum) over deep groundwater inflow into thin till lakes. Within the
euphotic zone of ALTM lakes, the depth-averaged steady-state concentrations of 0, varied from

3.6x107% t0 9.3%x10°1> M (median 2.0x10*> M) and fell on the upper end of the range of
depthaveraged values (e.g., 6x107Y7 to 5x1071> M) predicted for the epilimnia of lakes globally
(Partanen et al. 2021). While 10, concentrations were less sensitive to watershed hydrologic
connectivity and surficial geology than the apparent quantum yields, they followed a similar
seasonal trend: May/June > September > October/November. Consistently across seasons, 10,
concentrations were highest in lakes undergoing intense browning, intermediate in those
experiencing moderate browning, and lowest in those exhibiting mild browning (Figure 21). For
compounds with second-order reaction rate constants with 10, on the order of 10’ M s (e.g.,
herbicides and cyanopeptides), median half-lives attributable to 10, were predicted to range
from 6 to 23 months in the euphotic zone of lakes with intense browning, 9 to 38 months in
those with moderate browning, and 13 to 56 months in those with mild browning.
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Figure 20. Spearman’s correlation between dissolved organic carbon (DOC) and selected DOM
quality indicators measured in ALTM lakes sampled during the pilot study: (a) E2:E3, which is an
indicator of DOM molecular size; (b) SUVA254 (specific UV absorbance at 254 nm), which is an
indicator of DOM aromaticity; (c) freshness index, which is an indicator of the relative
contribution of recently produced DOM; (d) humification index, which is an indicator of the
degree of DOM humification. Error bars denote standard deviations from duplicate
measurements; if not visible, they fall within the markers.
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Figure 21. Multiple comparison of the estimated depth-averaged steady-state concentrations of
102 in the euphotic zone of ALTM lakes with varying degrees of browning. In the boxplot, each
box spans the 25th to 75th percentiles, with whiskers extending to 1.5 times the interquartile
range below the 25th and above the 75th percentiles. The centerline and “+” mark indicate the
median and mean, respectively. The gray circles represent outliers. The numbers in parentheses
represent the number of samples in each group. Box colors correspond to their respective
median values referenced against the color bar. A Kruskal-Wallis test was first performed to
determine whether statistically significant differences existed among groups. If significant,
pairwise Mann-Whitney U tests were performed, with significant differences marked by asterisks
as “*” (p<0.05), “**” (p<0.01), “***” (p<0.001), or “****” (p<0.0001). For the maps, the solid
yellow line delineates the boundary of Adirondack Park.

Next steps

Since DOM is a key regulator of physical, chemical, and biological processes in lakes, it is
valuable to characterize both its quantity (i.e., DOC) and its quality (e.g., optical properties and
photoreactivity) as part of SCALE framework. This component of research would expand
understanding of spatial and temporal patterns of DOM attributes in Adirondack lakes and the
lake-watershed characteristics that drive this variation, as well as the water quality parameters
that are related to shifts in DOM quantity and quality. Optical properties of DOM can also inform
other SCALE components, including the influence of browning on epilimnetic warming, thermal
stratification, hypolimnetic oxygen depletion and associated biological responses; inlake carbon
processing; nutrient and metal cycling (e.g., mercury); acid-base chemistry; and the
interpretation of remotely sensed data. Our 10, measurements provide a baseline for assessing
DOM photoreactivity in the ALTM lakes; however, generalizing 10, production in response to
browning remains challenging given the limited scope of sampling during this pilot phase.

Measuring 10 production within the SCALE framework will increase the spatial coverage and
temporal resolution of data beyond what we learned from the SCALE pilot study. In addition,
several other aspects of this work would benefit from SCALE. For example, in situ
measurements of diffuse attenuation coefficients would improve estimates of light availability in
the water column, and high-resolution temperature profiling would refine depth-specific
correction factors for 10, production. Together, these efforts will allow for a more complete
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assessment of the role of 105, and potentially other photooxidants (e.g., hydroxyl radicals), in
carbon cycling and contaminant attenuation in Adirondack lakes.

Data availability

Data for this study are summarized in a manuscript which has been submitted for review and
publication. Oz, B., P. K. Snyder, C. T. Driscoll, T. Zeng in review. Browning and Singlet Oxygen
Production in Adirondack Long-Term Monitoring Lakes, Environmental Science and Technology.

The data will be submitted for public access in the U.S. Environmental Protection Agency Water
Quality Exchange https://www.epa.gov/waterdata/water-quality-data

Environmental DNA

Overview and motivation

A key goal of SCALE pilot work was to evaluate whether environmental DNA (eDNA) can
be used as a robust tool for evaluating the fauna of Adirondack lakes. Specifically, we evaluated
the potential for eDNA to provide an efficient and sensitive way of profiling the species
composition of aquatic communities. Previous surveys, including the Adirondack Lake Survey
(ALS) from 1984-87, were performed using labor-intensive collection methods such as gillnets
and minnow traps. These conventional approaches require significant time and effort to
capture, identify, and document the species that are present, and are prone to overlooking rare,
cryptic, and small-bodied species. In contrast, eDNA methods hold promise for detecting and
identifying species of multiple major taxa from water samples, thereby providing a rapid,
noninvasive, and comprehensive snapshot of biodiversity. This approach can streamline both
broad surveys and long-term monitoring, enabling researchers and resource managers to
efficiently track species distributions, assess ecosystem health, and detect invasive species or
endangered taxa.

The SCALE pilot work involved sampling and analyzing eDNA from 12 lakes across the
Adirondack Park. We filtered water samples from replicate sites in shallow nearshore, deep
offshore, shallow offshore, and outlet habitats. DNA from fish, insects, and mussels was
amplified and analyzed, producing a table of unique sequences with their inferred taxonomic
identities. Sampling for this pilot study was designed to resolve four major uncertainties about
achieving adequate field sampling of small temperate lakes, thereby guiding design of field
sampling protocols for future sampling efforts. These uncertainties were: how much water
should be collected per sample to ensure strong species representation in every sample; how
many replicate samples should be collected per major habitat type in a lake; how many discrete
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habitat types should be sampled to fully represent the fauna of a lake; and whether the month
of sampling between May and September affects the inferred faunal inventory from a lake. In
addition, the laboratory analysis and bioinformatics steps to complete the dataset were
expected to offer lessons on primer selection, taxa that can be assessed most cost-efficiently,
and sensitivity to invasive and rare species.

Sample collection

Twelve lakes were included in this pilot study, and each was sampled to capture a range
of habitats and seasonal variations (Figure 22). From each lake, five samples were collected
from the surface nearshore habitat, five from the offshore habitat within the hypolimnion layer,
five from the offshore habitat near the surface, and one from the outlet stream flow. For the
ALTM lakes (n=8), we collected these 16 samples twice per year — once in spring (late May-
June) and once in fall (late August-early October) to test for seasonal differences in species
presence and detectability.

Little Clear Pond

East Copperas Pond

Upper Cascade Lake

Heart Lake

Dart Lake
Moss Lake

Lake Rondaxe
Sagamore Lake

Little Moose Lake East Lake

B ik Combs Lake

Figure 22. Lakes and ponds sampled for environmental DNA within the Adirondack Park for this
pilot study.
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Two of the ALTM lakes, Dart Lake and Sagamore Lake, were sampled at twice as many
sites per habitat in the fall to provide stronger inferences about the accumulation of species
detections with sampling effort. Four additional, non-ALTM lakes (Combs Lake, East Lake, Little
Moose Lake, Green Lake) were only sampled in the fall. These non-ALTM lakes were chosen to
represent a wide range of fish and mussel assemblage richness that has been documented by
Cornell’s Adirondack Fishery Research Program. These lakes offered the best-known faunal
composition for comparison to eDNA results.

eDNA data generation and reference database

The Environmental DNA and Genomics Core Facility (EGCF) at Cornell University
performed phenol-chloroform organic DNA extractions on a total of 376 field eDNA samples
collected during pilot field collections. Of these 376 samples, 361 were lake samples and 15
were field blanks collected to estimate levels of contamination during the sampling process. In
addition to lake samples and field blanks, 18 extraction blanks were generated in the lab to
monitor contamination during the extraction process. Additionally, two PCR blanks were
included to confirm the absence of contamination during amplification. To target the
amplification of barcodes associated with fish species, the MiFish region was amplified from all
samples following the protocol by Miya et al. (2015). To target amplification of mussels across all
lakes, COIl primers based on Dokai et al. (2023) were used.

The focus of the pilot project was fish and mussel eDNA, and all samples were
sequenced using the NextSeq 500 platform with 2x150bp chemistry. The same eDNA extracts
can be analyzed for other taxa by sequencing other genes, and we tested two other barcoding
loci on an exploratory basis to inform future SCALE work. First, we analyzed samples from Moss
Lake only for insects using COIl primers as described by Leese et al. (2021). Given the smaller
number of samples, insects in Moss Lake were sequenced on the MiSeq platform, also using
2x150bp chemistry. Second, we analyzed the full set of 376 samples using a universal set of 18S
rRNA primers intended to target all metazoan organisms by Hadziavdic et al. (2014). An initial
screening of the dataset suggested high rates of non-target amplification (i.e., non-metazoans)
with limited applicability to the goals of this study. This dataset will continue to be analyzed but
is not being further addressed in this report due to its unexpected complexity.

The EGCF processed the sequencing data using a pipeline that included Trimmomatic
(Bolger, Lohse and Usadel 2014) for read trimming, DADA2 for error modelling and amplicon
sequence variant (ASV) inference (Callahan et al. 2016), and BLAST for taxonomic assignment
(Camacho et al. 2009). The resulting output was a detailed table of unique sequences (amplicon
sequence variants, or ASVs) detected in each sample for each barcoding locus.
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To convert ASVs into a list of species whose barcodes were detected in each sample, the
sequences are compared to a reference database that serves as an identification key. We drew
upon existing reference databases from the National Institute of Health National Center for
Biotechnology Information (NIH NCBI) for these taxonomic classifications. The nucleotide
database (GenBank) contains over 250 million sequences across all metazoans and serves as the
most commonly used and taxonomically comprehensive reference database for environmental
DNA sequence classification. To ensure the applicability of the GenBank dataset to Adirondack
ecosystems, the database was screened by the EGCF to ensure that reference sequences were
available for all fish species known to be present in the region. Although the GenBank database
is comprehensive for fish species of the Adirondacks, several gaps were identified in regard to
mussel species native to the region (as highlighted below in “Synthesis and Next Steps”).

Comparing fish eDNA results with SCALE pilot study catches

For stable isotope analyses conducted under the SCALE pilot study, a modest number of
fish were captured from eight of our twelve study lakes (Combs Lake, Dart Lake, East Lake,
Green Lake, Heart Lake, Moss Lake, Sagamore Lake, and Upper Cascade Lake). All but one
species captured in each lake for isotopic analyses were also detected using eDNA. The
exception was the northern redbelly dace (Chrosomus eos) population in Moss Lake. Only two
northern redbelly dace were captured near the Moss Lake inlet using minnow traps, and
historical survey data indicate that northern redbelly dace represented ~0.1% of individual
fishes in Moss Lake and are most abundant at the inlet (~¥3% of fishes). It is possible that eDNA
sampling missed this species because it moves into and out of Moss Lake seasonally from the
inlet stream.

Comparing fish eDNA results with historical catch data

Nearly a century of historical fish catch data is available for three of the ALTM lakes in
this pilot study (Lake Rondaxe, Figure 23, Moss Lake, Figure 24, and Dart Lake, Figure 25,
Daniels et al. 2011), with 4-5 visits per lake since 1931. For these three lakes, we compared
species list between historical catches and eDNA results to assess the thoroughness of eDNA-
based fish species inventories. For the other ALTM lakes in this pilot study, we have only a single
historical time point to compare against (Adirondack Lake Survey in the 1980s), so these three
lakes represent a rare opportunity to investigate community changes over longer time scales.

Most eDNA results agreed with knowledge from historical surveys by traditional
methods. However, we also inferred three distinct patterns of species changes in the three lakes
relative to previous records: population resurgences, recent losses, and recent gains. 1)
Population resurgences were evident in cases where species last recorded in catch data from
the 1930s were not observed again until our 2023 eDNA analysis (e.g., northern redbelly dace,
Chrosomus eos and finescale dace, C. neogaeus in Lake Rondaxe). These detections may reflect
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populations recovering after environmental stressors, such as acidification, or could represent
rare community members that are not consistently detected by traditional sampling methods.
2) Species losses were

represented by species that were historically present in catch data but were not detected in the
2023 eDNA samples. These were often prey species, such as the common shiner (Luxilus
cornutus) which was historically common in Lake Rondaxe, Moss Lake, and Dart Lake but was
not detected in any of the three lakes using eDNA in 2023. If real, the lack of detection in 2023
may be linked to the introduction of invasive predators (i.e., Micropterus bass species), which
could have pushed populations too low to be reliably detected by limited eDNA sampling. 3)
Species gains refer to new species detected in the eDNA dataset that had never been previously
documented in these lakes. Some of these species may have been present at low abundance
during previous surveys but can be detected more effectively by sensitive eDNA methods. Other
apparent species gains may be new migrants or invasive species. A notable example is the
margined madtom (Noturus insignis), a species not native to the Adirondacks but known to be
expanding its range into this watershed. N. insignis was detected in multiple samples from both
Lake Rondaxe and Dart Lake, highlighting the utility of eDNA for tracking community changes.

Species Detection in Rondaxe

Umbra limi

Semotilus atromaculatus
Salvelinus fontinalis

Salmo salar

Rhinichthys atratulus
Pimephales promelas
Pimephales notatus

Perca flavescens

Osmerus mordax

Noturus insignis

¢ Notemigonus crysoleucas
o] Micropterus salmoides
a MlcroEterus dolomieu
0 uxilus cornutus
L%Ponnsglbbosus

Fundulus diaphanus
Exoglossum maxillingua
Culaea inconstans
Coregonus clupeaformis
Chrosomus neogaeus
Chrosomus eos
Catostomus commersonii
Ameiurus nebulosus
Ambloplites rupestris

1931 1982 1986 2000 2006 2023
(eDNA)

Figure 23. Presence-absence data for species in Lake Rondaxe. Filled, grey cells represent the
presence of species determined by catch data and filled, green cells represent the presence of
species determined by eDNA pilot samples.
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Species Detection in Moss Lake

Umbra limi

Semotilus atromaculatus
Sander vitreus A

Salvelinus namaycush -
Salvelinus fontinalis
Salmo trutta

Salmo salar A

Rhinichthys atratulus -
Perca flavescens
Osmerus mordax
Notemigonus crysoleucas
Micropterus salmoides
Luxilus cornutus

Lepomis gibbosus
Chrosomus eos
Catostomus commersonii
Ameiurus nebulosus
Ambloplites rupestris

Species

2000 2006 2023
(eDNA)

1982 1986

Figure 24. Presence-absence data for species in Moss Lake. Filled, grey cells represent the
presence of species determined by catch data and filled, green cells represent the presence of
species determined by eDNA pilot samples.

Species Detection in Dart Lake

Umbra limi

Semotilus atromaculatus

Salvelinus namaycush

Salvelinus fontinalis

Perca flavescens

Noturus insignis

Notemigonus crysoleucas

Micropterus salmoides -
Micropterus dolomieu
Luxilus cornutus
Lepomis gibbosus
Fundulus diaphanus
Couesius plumbeus
Coregonus clupeaformis
Chrosomus neogaeus
Chrosomus eos
Catostomus commersonii
Catostomus catostomus
Ameiurus nebulosus
Ambloplites rupestris

Species

1931 1982 1986 2000 2006 2023
(eDNA)

Figure 25. Presence-absence data for species in Dart Lake. Filled, grey cells represent the
presence of species determined by catch data and filled, green cells represent the presence of
species determined by eDNA pilot samples.
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Fish species accumulation curves with eDNA sampling effort

eDNA samples collected for this pilot study produced species lists that closely resemble
those from historical catch data, yet did not indicate a plateau in fitted species accumulation
curves (Figure 26). We conclude that the majority of species are successfully detected in eDNA
sampling using our pilot methodology (n=16 samples per lake; 150mL filtered per sample), but
that a combination of low abundance and ephemeral presence in lake habitats allowed some
species to be overlooked. As highlighted by previous literature, lakes in the Adirondacks are
highly connected (Daniels et al. 2008) and fish readily move back and forth between fluvial and
lacustrine ecosystems. Highly connected lakes that have communities influenced by dispersal
often do not conform to the accumulation patterns of closed systems, hence accumulation
curves may not achieve their expected asymptote (Dove and Cribb 2006). For instance, in spring
samples, species accumulation curves for our results from Sagamore Lake and Moss Lake
suggest an asymptote at a similar number of species, but the curve of Moss Lake accumulates
more gradually (Figure 26). Previous literature (Daniels et al. 2008) has suggested that Moss
Lake is highly connected with Dart Lake and Lake Rondaxe, and exchanges of species among
these lakes may drive the apparent low species accumulation rate in Moss Lake.

Seasonal differences in species accumulation were observed in some lakes. In general,
lakes tended to accumulate higher numbers of species in the spring, though this trend was not
consistent across lakes. These patterns may be influenced by spring snowmelt and seasonal fish
movements, such as adult migrations for spawning or movement of juveniles from streams into
lakes. Notably, Lake Rondaxe exhibited the highest species richness in the spring, with fitted
accumulation curves approaching 25 species. Located at the intersection of several lakes and
with a known history of species introductions, Lake Rondaxe may function as a hub for fish
movement within the region.
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Figure 26. Species accumulation curves from eDNA sampling of SCALE pilot lakes. The left column
represents spring sampling events, and the right column represents fall sampling events. The
upper row presents results from individual 150mL field samples; the bottom row illustrates
simulated 300mL samples (pooled results from two 150mL replicates collected at the same time
and location). Pink diamonds represent the number of samples at which 90% of the projected

number of species would be recorded.

To evaluate the potential effect of larger sample volumes on species accumulation, we
combined sequence data from replicate samples taken at the same time and location, effectively
creating 300 mL composite samples from two 150 mL replicates (Figure 26, bottom row). These
larger volume samples demonstrated, on average, a 1.8X increase in species information
content, meaning they detected far more species per sample but were somewhat less efficient
per unit volume than additional small-volume samples from other locations. Species
accumulation curves suggest that even with 300 mL volumes, a very large number of samples
would be required to fully profile community diversity. This finding has motivated the SCALE
eDNA team to plan future sampling around 2 L samples collected from a broader zone within a
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sampling site. Shifting to larger volumes and less-fine filters is becoming more standard practice
in eDNA surveys, with the goal of improving detection of rare or low-abundance taxa while also
minimizing the total number of samples required.

Some lakes, particularly small systems like East Copperas and Little Clear Pond, displayed
unexpected accumulation patterns. For example, Little Clear Pond is known from historical data
to support only brook trout and brown bullhead, yet eDNA sampling yielded up to five species.
Contamination is unlikely, as negative controls (blanks) were clean. Index hopping
(GuenayGreunke et al. 2021), a sequencing artifact that can occur when highly similar barcodes
lead to incorrect assignment of reads to samples, could be a possible explanation for observed
patterns in small lakes. To address this, future sequencing will adopt higher-accuracy platforms
(e.g., MiSeq rather than NextSeq) and revised library preparation protocols. Additionally,
replacing dual indexing with matching forward and reverse barcodes may reduce or eliminate
index hopping during demultiplexing, although this would reduce the number of samples that
can be multiplexed in a single sequencing run (i.e., a non-trivial efficiency cost). Index hopping is
a more problematic issue in samples with low species diversity and low data yield, where even
minor index hopping during demultiplexing can have a disproportionate effect and overwhelm
true signal. This pilot study has helped our team to identify this suite of technical issues to be
addressed in future eDNA sampling and laboratory analyses.

Seasonal and habitat detection heterogeneity

Most detected species (68%, on average) were present in samples from both seasons,
whereas 16% were detected only in the fall and 16% were detected only in the spring. The lake
with the highest percentage of species detected in both seasons was Upper Cascade Lake
(87.5%), which had one of the richest fish faunas among our pilot lakes.

Both spring and fall were similar in their detection variability across habitats. The
category of species that was most different in detection between spring and fall was those
detected only in the nearshore environment. In spring, the average percentage of species only
detected in the nearshore environment was 15.49% while the same category for fall was 7.21%.
It is possible that juvenile fish aggregating in the shallows or seasonal movement of adult fish
for spawning in the spring are being captured by our eDNA sampling, but seasonal differences in
physical mixing of lake waters could also be involved. Thus, we are unable to resolve the
explanation for this pattern.

Species commonly associated with shallow water environments (e.g. golden shiner) were
typically found in both nearshore and offshore surface water sampling. Similarly, species
commonly associated with deepwater environments (e.g. round whitefish in Upper Cascade),
were detected primarily in offshore habitats (both deep and shallow) across both seasons.
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Taken together, these results suggest that spring and fall eDNA sampling each capture a
modest number of unique species records, potentially due to seasonal movement patterns.
However, we conclude that sampling in both seasons is not necessary to capture the dominant
species in the fish community of Adirondack lakes, especially if we enhance the volume of water
filtered and integrate a broader sampling area per sample. In contrast, in any season, sampling
distinct habitats is necessary to detect a variety of species that are habitat specialists, including
certain species of special conservation concern in the State of New York (e.g., brook trout and
round whitefish). Thus, we recommend continuing collection of both nearshore and offshore
samples, but the team should consider vertical integration of offshore samples to reduce the
number of habitat classes from three to two.

Detection of insects and mussels by eDNA

eDNA samples were also analyzed to evaluate the detectability of mussels and insects,
which lack historical survey data for comparison. These efforts were exploratory and relied upon
barcoding loci that were drawn from recent literature on each group. For the insect eDNA
survey at Moss Lake, non-biting midges (Chironomidae) were by far the most highly detected
arthropod family, representing 72.1% of the 1,701,260 reads sequenced across the dataset. This
accords well with previous uses of this barcoding locus, which is highly sensitive to dipterans.
The second and fourth most common families were both terrestrial insects: Lauxaniidae flies
(9.7%) and Caeciliusid barklice (1.5%), which presumably fell into the water. The top 10 families
detected in Moss Lake samples are shown in Table 5, which includes two families of water fleas
(microcrustaceans). We find these results intriguing and recommend that the SCALE team
consider expanding the use of insect eDNA primers given the long history of using aquatic
insects as bioindicators of environmental condition. Unlike fish, there is no existing data on
differences in insect assemblages among Adirondack lakes, but eDNA findings could establish a
baseline for interpreting future faunal changes.
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Table 5. eDNA sequence assignments to arthropod families from Moss Lake samples.

Mussel primers amplified DNA from all lakes. Across all the pilot lakes, four taxonomic

Order Family Number of Reads Percent of Reads (%)
Diptera Chironomidae 1226808 72.1117
Diptera Lauxaniidae 165379 9.721
Diptera Chaoboridae 96201 5.6547
Psocodea Caeciliusidae 25850 1.5195
Trichoptera Sericostomatidae 23061 1.3555
Ephemeroptera Ephemeridae 23006 1.3523
Anomopoda Chydoridae 14879 0.8746
Anomopoda Macrotrichidae 14617 0.8592
Diptera Ceratopogonidae 18518 1.0885
Diptera Simuliidae 16891 0.9929

groups were identified: Utterbackia imbecillis, Elliptio complanata, Elliptio hopetonensis, and a
set of similar sequences belonging to the genus Elliptio that did not match any particular species
in the reference database. Elliptio hopetonensis is narrowly endemic in Georgia, while Elliptio
complanata is wide ranging across the entire east coast of the United States, including Georgia.
As Elliptio hopetonensis was only detected in one of our samples, it could be the result of
sequencing error. However, the taxonomic assignment of some of our samples to Elliptio
hopetonensis could also arise from taxonomic misidentifications within the reference database,
which includes other Elliptio species whose geographic range overlaps with that of E.
Hopetonensis. To tackle these challenges in mussels, a group with poor representation in the
genetic databases, we will be generating Adirondack-specific mussel databases (described
further below in “Synthesis and next steps”). Utterbackia imbecillis was only detected at the
outlet of Moss Lake and is known to be a riverine species native to the region. The full, habitat-
level breakdown of where each taxonomic group was observed is shown above in Table 6. In all
lakes, mussels were most frequently detected in the near-shore environment, although mussel
eDNA was also detected in some offshore sites, with more offshore detections being from
surface samples than from deep samples.
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Table 6. eDNA detections of unionid mussels in SCALE pilot samples.

Lake Habitat :;ttzmtn: Taxon
East Lake Nearshore 4/5
Offshore surface 2/5
Offshore deep 1/10
Fleart Nearshore 1/10
Offshore deep 3/10
Moss Lake | Nearshore 10/10
Offshore surface 10/12 Elliptio sp.
Offshore deep 6/9
Rondaxe | Nearshore 7/10
Surface 8/12
Offshore deep 5/14
Sagamore | Nearshore 7/14
Offshore surface 8/16
Offshore deep 3/14
Sagamore | Nearshore 12/14 Elliptio complanata
Offshore surface 4/16
Moss Lake | Nearshore 1/10 Elliptio hopetonensis
Moss Lake | Offshore surface 1/12 Utterbackia imbecillis

During this pilot study, we did not sample for the physical presence of mussels. Previous

sampling efforts of the Adirondack Fishery Research Program have found populations of Elliptio

complanata in East Lake, suggesting that eDNA is successfully capturing true, known

populations. Unfortunately, that is our only check on inferences regarding mussels in this pilot

study.

Synthesis and next steps

Overall, our results indicate that most fish species were detected in both seasons, with

some additional species detections were season specific. Similarly, most species were detected

across all habitat types (nearshore, offshore shallow, offshore deep), but some important
species were unique to specific habitats (e.g., round whitefish in deep habitats of Upper

Cascade Lake). eDNA detections aligned well with both contemporary and historical catch data
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in most cases. Insect detections were dominated by chironomid midges and suggested that
many taxa were present. Mussels were detected in five lakes, most commonly in nearshore
habitats. We conclude that eDNA is highly promising as a scalable and cost-effective component
of future surveys, offering unique power to inventory present-day aquatic biodiversity across
multiple taxa. We also conclude that eDNA surveys are suitable for revealing changes in the
fauna of Adirondack lakes relative to historical baselines.

The lessons from this pilot study are guiding refinement of our plans for future field
sampling and lab analysis protocols for eDNA, particularly regarding the number and spatial
distribution of samples. The pilot clearly demonstrated the importance of sampling both
nearshore and offshore habitats to adequately capture fish community diversity. Additionally,
the majority of species are reliably detected across seasons, indicating that a single site visit
between May-September will suffice for community characterization. However, more intensive
sampling across multiple seasons might be necessary to detect rare and ephemeral species that
move in and out of lake systems. Thus, we recommend delving further into temporal stability of
eDNA detections by collecting seasonal samples in future sampling efforts. Performing monthly
sampling of that modest number of lakes may also offer compelling insights into the seasonal
dynamics of species composition in Adirondack lakes, providing an important phenological
baseline for future evaluations of climate change impacts.

Although the species lists detected by eDNA captured major community members
historically present in the pilot lakes, current species accumulation curves based on 150 mL and
300 mL samples suggest that a prohibitively high number of samples would be required to fully
characterize communities under the existing protocols. Simulations of collecting larger sample
volumes (300 mL) indicate potential to gather more information per sample processed, hence
we recommend that future surveys be based on filtering 2.0 L of lake water per sample, which is
becoming more common in eDNA research. We will continue to explore simulation approaches
to refine the recommended sample volume and identify the number of samples required to
meet or exceed the detection probabilities evident from this pilot work.

Another key issue is the size of the lake: pilot eDNA data suggest that sampling intensity
should be adjusted with lake size. For instance, small systems such as Combs Lake exhibited low
fish diversity (just two fish species in recent catch data as well as every eDNA sample),
suggesting that minimal sampling is sufficient in these systems. In contrast, large lakes like Little
Moose Lake showed high species richness and habitat heterogeneity, but our pilot eDNA
sampling overlooked a number of fish species documented by the Adirondack Fishery Research
Program. Many of the species expected in Little Moose Lake were not detected in fall-only eDNA
sampling, indicating that both increased sample volume and spatial coverage might be needed
for adequate biodiversity assessment of such a large lake.
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For genetic analyses of eDNA samples, our experience from this pilot study indicates that
future eDNA surveys should utilize single index barcodes that are incorporated into both sides of
reads. This would require identical index sequences to be present on both ends of the reads,
which reduces the possibility of index hopping during the demultiplexing process. Unexpected
species detections in small lakes during the pilot study may be attributed to this sequencing
artifact, which occurs when sequencing reads are misassigned to incorrect samples during
demultiplexing (Guenay-Greunke et al. 2021). By using unique, matching indices on both the
forward and reverse reads rather than combinatorial indexing, a revised protocol can minimize
false positives and improve community characterization across all sampled lakes.

Due to the success of the Moss Lake aquatic macroinvertebrate eDNA exploration, we
recommend expanding sampling efforts to characterize macroinvertebrate communities using
eDNA. The literature suggests that dipterans are sensitive to environmental change and should
be quite useful in eDNA biomonitoring efforts (Keck, Brantschen and Altermatt 2023). The
inherent difficulty in taxonomically identifying aquatic dipterans (especially chironomids) to
genus or species level via microscopy has excluded them from being a significant part of
traditional bioindices, which instead focus on Ephemeroptera, Trichoptera, and Plecoptera (EPT,
e.g., (Zweig and Rabeni 2001). However, the sensitivity of the widely used aquatic
macroinvertebrate primers to amplification of Chironomidae have revealed greater biodiversity
and community sensitivity to change than previously understood. The primers used here
amplified dipteran DNA effectively but are biased against Trichoptera and Odonata (Leese et al.
2021), two groups that were demonstrated to be present in most lakes by pilot sampling for
stable isotope analyses of macroinvertebrates. To reduce these biases and increase our ability to
compare eDNA data with traditional macroinvertebrate surveys, we recommend testing
additional macroinvertebrate primers that focus on EPT amplification, which could be paired
with the primers used in our pilot analysis of Moss Lake samples. Future sampling efforts should
include paired eDNA and aquatic macroinvertebrate surveys on a subset of lakes to enable
confirmation of detected taxa.

Based on the low detection and poor taxonomic identification of our mussel samples, we
recommend producing a customized freshwater mussel mitochondrial genome reference
database for the Adirondack Park. In support of that goal, we have already collected both
voucher specimens and tissue samples from Adirondack waters in 2024. To account for genetic
variation found across isolated populations of freshwater mussels, we sought to collect tissues
from every species in each of the 5 major drainage basins within the park. Our pilot work also
made us aware of a major complication with freshwater mussel eDNA. Freshwater mussels
exhibit heteroplasmy; in addition to the standard matrilineal mitochondrial inheritance, male
mussels also inherit male-type mitochondria patrilineally (e.g., Wen et al. 2017). The sequence
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divergence between the male- and female-type mitochondrial haplotypes of a single individual
can be greater than the divergence between two male-type or female-type mitochondria of

different species. This unique life history trait may have also led to the poor taxonomic
matches that characterized some of our results. To accommodate this revelation, we plan to
extract and sequence DNA from the gonads of the male voucher specimens in addition to the
mantle tissue. After we produce an updated reference database, we will evaluate the Dokai et al
(2023) freshwater mussel primers to confirm their efficacy for Adirondack freshwater mussel
species. Future sampling efforts should incorporate searches for mussels into standard
macroinvertebrate surveys to provide confirmatory manual sampling. It remains unclear
whether mussel eDNA can be effectively integrated into plans for future analyses, but we
recommend that the team continue to seek an effective way to address this vulnerable taxon for
which traditional field surveys are challenging and time-consuming.

Data availability

All sampling metadata has been deposited in the EPA Water Quality eXchange (WQX)
database with notes in the “Result Comment” header mentioning that the sampled water was
stored as an eDNA filter and that the raw sequence data is hosted by the National Institutes of
Health National Center for Biotechnology Information (NIH NCBI) short read archive (SRA) under
BioProject PRINA1246971, as is typical for sequence data. All SCALE pilot eDNA samples are
uploaded on the WQX platform by the organization ID “CORNELLSCALE” under project “SCALE”.

Stable Isotopes

Overview and motivation

This pilot study was designed to address a set of four sampling uncertainties to guide
future SCALE research. First, we wanted to test whether stable isotope compositions of benthic
macroinvertebrate taxa are consistent within the same lake across seasons, despite potential
shifts in benthic macroinvertebrate community composition and trophic ecology. Second, we
wanted to identify which macroinvertebrate taxa are commonly observed across most lakes,
and test whether stable isotope analysis of benthic macroinvertebrate tissues can reveal food
web patterns in Adirondack lakes. Third, we wanted to explore whether hydrogen and sulfur
isotopes could help refine understanding of the contribution of terrestrial energy sources and
deep-water deoxygenation, respectively, to the food web. Finally, we wished to resolve how
many different sites within a lake should be sampled to obtain a representative isotopic baseline
from macroinvertebrates. To address all these issues, we sampled four lakes during one season
and eight lakes during two seasons for both benthic macroinvertebrates and their potential food
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resources (i.e. periphyton, leaves, and zooplankton). When possible, we also collected fishes to
represent higher trophic levels.

The characterization of food webs through stable isotope analysis requires an
appropriate lake-specific baseline to enable comparisons across different ecosystems (Post
2002). We surveyed benthic macroinvertebrates to determine the most appropriate taxa to use
as isotopic baselines during surveys of Adirondack lakes. This work is a key step in preparing for
food web sampling and analysis for SCALE, including interpretation of results from fishes.
Invertebrate taxa used to establish isotopic baselines for ecosystem comparisons should be
commonly found across the landscape, and should include primary consumers (i.e., algae
grazers or filter feeders). Mollusks are commonly used in this context (Post 2002), but the low
calcium availability of Adirondack waters—especially following a century of acid precipitation—
makes them challenging to find.

Sample collection process

We conducted three tiers of lake sampling intensity for stable isotope analyses of animal
tissues: “seasonal with site intensity”, “seasonal”, and “fall only” (Table 7). This series of
sampling approaches was designed to balance sampling intensity within a lake against the
number of lakes included in comparisons. Taken together, the datasets were intended to
address all four study design questions indicated earlier by informing the amount of variance

attributable to sites within lakes, seasonal variation, and between-lake differences.

At each site, we conducted traditional sampling of benthic macroinvertebrates with
either D-Frame net sweeps or searches, both of which are frequently used in isotopic baseline
surveys (Post 2002; Jardine, Kidd and Cunjak 2009). We conducted three, thirty-second sweeps
using a D-Frame net and combined all samples to form a composite sample of benthic
macroinvertebrates for each site. Additionally, ten-minute searches were conducted by
manually searching woody debris and rocks for clinging macroinvertebrates that would be
missed in D-Frame net sweeps. We also sampled leaves and periphyton from each lake through
manual grabs and scrapes. We sampled zooplankton from each lake with a 64um zooplankton
tow taken vertically from the thermocline to the surface. Finally, we collected fish, when
possible, to verify that the sampled invertebrates provide a robust basis for interpreting the
isotopic composition of fishes in the same lake. After collection, benthic macroinvertebrates and
zooplankton were placed in clean water and were held for at least 12 hours in order to evacuate
their gut contents. After collection and gut evacuation, tissue samples from each taxon were
frozen for later processing in the lab at Cornell.
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Table 7. Sampling strategies that describe the seasonal and site intensity used within each lake.

Sites Sampled

Category Water Spring | Fall
Seasonal with site Dart Lake 4 2
intensity Moss Lake 4 2
Sagamore Lake 2 2
Rondaxe Lake 2 2
S | Upper Cascade Lake 2 2
casona Little Clear Pond 2 2
East Copperas Pond 2 2
Heart Lake 2 2
Little Moose Lake 0 2
Fall onl East Lake 0 2
altonly Combs Lake 0 2
Green Lake 0 2

Laboratory processing

In the lab, all benthic macroinvertebrates were identified to the lowest possible
taxonomic unit using Freshwater Macroinvertebrates of Northeastern North America (Peckarsky
et al. 1990) and enumerated. For stable isotope analysis, we analyzed whole invertebrates. Each
invertebrate was inspected to determine if the gut tract was empty. If the gut tract had not
evacuated during the overnight holding period mentioned above, we removed it. However, if
the gut tract had evacuated, we left invertebrates whole. Periphyton and zooplankton samples
were processed as bulk samples and were not identified past assemblage type. Leaves were
attributed to a tree species based on their shape, and we sampled only leaf material (no woody
petiole or veins). Fishes were identified to species, and dorsal white muscle was dissected out
for analysis (no skin, scales, or bones).

We oven-dried all samples (60C, 48 hours), then ground them into a fine powder using a
spatula inside their glass storage vial. We analyzed all samples for §'3C and 6%°N, then
processed ~ 25% of samples for §34S and &2H.

Benthic macroinvertebrate distributions

We identified a broad variety of macroinvertebrate taxa in the surveyed Adirondack
lakes. The most commonly observed taxa included Odonata, Ephemeroptera, Amphipoda, and
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Trichoptera (Table 8). We calculated three metrics to determine how common each taxon was
across lakes, sites, and seasons. First, we quantified lake-level occurrence as the proportion of
lakes in which a taxon was present in at least one sample (N = 12). Second, we calculated site-
level occurrence by averaging, across lakes and seasons, the proportion of sites within each lake
where the taxon was detected. Finally, we assessed seasonality using only lakes sampled in both
seasons, calculating the proportion of those lakes where the taxon occurred in both spring and
summer.

We did not find any single species of macroinvertebrate across all lakes, indicating that
we will likely need to obtain a range of taxa in order to be confident that we can develop
comparable baseline isotope ratios based on an overlapping set of taxa across all waterbodies.
Most common taxa were observed from a particular lake during both spring and fall. The within-
lake distribution of taxa also varied; some families frequently occurred at all sampled sites (e.g.,
Heptageniidae), while others (e.g., Polycentropodidae) were typically observed at only a subset
of sites within a lake (Table 8).

Table 8. Details of the most frequently observed taxa across the twelve surveyed lakes. Values
represent how broadly species were distributed across lakes (proportion of lakes), across sites
within a lake (proportion of sites within a lake, averaged across lakes), and across seasons within
a lake (average across lakes of likelihood of being observed at 1 or more sites in one season [0.5]
vs. both seasons [1.0]).

Order Family Prop. of Lakes Avg. Prop. of Sites Seasonality
odonata libellulidae 0.92 0.67 0.77
diptera chironomidae 0.83 0.68 0.80
odonata aeshnidae 0.83 0.60 0.87
odonata coenagrionidae 0.75 0.84 0.95
odonata corduliidae 0.67 0.65 0.87
ephemeroptera heptageniidae 0.67 0.88 0.93
amphipoda talitridae 0.58 0.84 0.89
odonata gomphidae 0.58 0.82 0.94
trichoptera polycentropodidae 0.58 0.36 0.80

Benthic macroinvertebrate trophic positions and source contributions

We estimated trophic positions by standardizing the §'°N values of macroinvertebrates
against that of basal resources (i.e., zooplankton, periphyton, and leaves) within each lake,
accounting for the expected fractionation between trophic positions (3.4 %o 6°N) (Post 2002).
From the estimated trophic positions, we distilled a list of taxa that could potentially serve as
low-trophic position (median <1.5) reference points (“baselines”) across lakes. For these taxa,
we further examined their variation within a lake based on sampling season and site (Figure 27).
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Figure 27. Estimated trophic positions for a subset of the surveyed taxa that had median trophic
positions less than 1.5, indicating the taxon’s potential to represent a baseline.

It is ideal to identify a suite of animal taxa that provide a baseline for each major energy
flow pathway fueling the food web (periphyton, phytoplankton, terrestrial inputs). Thus, we
used stable isotope ratios measured from periphyton, zooplankton, and tree leaves as
endmembers for estimating energy flow to each macroinvertebrate taxon using three-source
mixing models of §3C and 6%°N in the R package ‘simmr’ (version 0.5.1.216; (Parnell et al. 2010).
This allowed us to identify which taxa had high proportional contributions from periphyton (to
represent the benthic baseline) for comparison to zooplankton (which represents the pelagic
baseline; Figure 28).
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Figure 28. Contribution of isotopic baselines for terrestrial subsidies (e.g. leaves), benthic
baselines (e.g. periphyton), and offshore baselines (e.g. zooplankton).

Seasonal effect on trophic position and source contributions

After correcting for baseline variation, we found no consistent differences by season
across lake macroinvertebrate taxa, indicated by minimal variation in both their trophic
positions and energy source contributions between seasons. This suggests that sampling just
once between May and September should be adequate to capture variation in lake-level
differences in isotope baselines.

Site-level variation in baselines

If macroinvertebrates used to estimate baseline stable isotope ratios are themselves
spatially variable within a lake, it could add substantial uncertainty to all subsequent
calculations. Our pilot sampling was designed to resolve the magnitude of variation within a
taxon across sites in the same lake, and whether there were systematic spatial differences
across all taxa. We quantified the 95% confidence intervals for the entire macroinvertebrate
community for 8*°N and §3C, and found extensive overlap in most cases, indicating little site-
specific variation.

Moss Lake (MSL) and Dart Lake (DTL) were sampled in both seasons and with extra sites
in Spring. One of the four DTL sites showed minimal overlap with the other three sites during
Spring sampling (Figure 29). In most other cases, there was sufficient overlap in community
isotope space to infer that spatial variation is relatively minor. In addition, to the extent that
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there were spatial differences, they arose primarily on the §3C axis rather than 8'°N. Given that
the isotopic composition of macroinvertebrates was occasionally different among sites within
each lake, we suggest that future SCALE sampling should include at least two sites per lake to
establish isotopic baselines
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Figure 29. Evaluating inter-site differences in isotopic composition (613C and 615N) of benthic
macroinvertebrates from lakes sampled during the spring. Each panel is a lake, and the color
indicates the nearshore site within each lake. Points represent raw isotopic compositions for
individual samples with 95% confidence intervals around all individuals at each site. The
sampled taxa in each lake include 1-12 families of benthic macroinvertebrates representing
snails, midges, beetles, mayflies, caddisflies, alderflies, damselflies, and dragonflies.

Isotopic composition of fishes

We analyzed fish from a subset of the sampled lakes to ensure that the results from
benthic macroinvertebrates and basal resources were adequate to interpret energy flow and
trophic position of fishes, which will be a key objective for SCALE. We found that fishes were
consistently higher in 8'°N, as expected, than all basal resources. Their §'3C was also
intermediate between tree leaves and periphyton in most lakes and fell within the range of
macroinvertebrate taxa in all cases (Figure 30). Thus, we have no concern about being able to
use basal resource and macroinvertebrate samples to interpret the energy flow and trophic
position of fishes in Adirondack Lakes.
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Figure 30. Summary of the isotopic ranges for both §13C and 615N for all major biotic groups
sampled during the pilot, as represented by color. Each point represents the mean isotopic
composition for that group with the range of each isotope represented by the vertical and
horizontal lines.

Deuterium and sulfur isotopes

Our goal in quantifying 82H and 634S for a subset of samples was to determine whether
these less-used isotope ratios would be useful for resolving the influence of terrestrial energy
subsidies (6%H differs sharply between terrestrial and aquatic primary producers) and low
oxygen conditions (8§3*S is highly redox sensitive due to fractionation during sulfate reduction)
on Adirondack lake food webs. We found a clear positive relationship between &2H of benthic
macroinvertebrates and the [DOC] across all sampled lakes. There were no consistent seasonal
shifts in 82H. This suggests that inputs of terrestrial carbon to lakes enhance the 6%H of the food
web (Figure 31), hence 6%H can be used as a broad proxy for terrestrial energy subsidies.

For 634S, we compared the §3*S compositions of all benthic macroinvertebrates to the
minimum depth (m) at which low oxygen concentrations (< 5 mg/L dissolved oxygen) arise. This
depth was unique to each lake and was determined from oxygen profiles collected during each
sampling visit. We found no strong relationship between the 634S and the depth where oxygen
stress began (Figure 31). Thus, we recommend further investigation of the causes of differences
among lakes in §3*S before it is integrated deeply into SCALE.
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Figure 31. (Left) 62H of macroinvertebrates increases with dissolved organic carbon (DOC)
concentrations, suggesting a positive relationship between dissolved organic carbon and the
contribution of terrestrial energy subsidies to lake food webs. (Right) 634S shows no strong
relationship with the depth where oxygen stress begins (5 mg/L).

Baseline candidates

We identified a set of primary consumers (trophic position ~ 1) that can serve as useful
indicators of the baseline for major energy inputs to food webs in Adirondack lakes. We have
selected the most common of these taxa, Heptageniidae, as the primary taxon to represent
periphyton baselines. Given the heterogeneity of benthic macroinvertebrates communities
across sites, seasons, and lakes, we also selected a set of secondary taxa that should be
collected from sites where Heptageniidae cannot be found. These taxa include other
Ephemeroptera and several families of snails (when available). We also recommend that
zooplankton samples be taken at multiple locations within the lake as no benthic
macroinvertebrates adequately represented the planktonic energy pathway.

Recommendations for future field sampling for SCALE

Our pilot sampling was designed to determine the value of using stable isotope analysis
of benthic macroinvertebrates to characterize food webs across Adirondack lakes, and to guide
decisions about the number of lakes, sites within lakes, and seasons of the year to target for
stable isotope sampling for SCALE. Our analyses of the same macroinvertebrate taxa from the
same lake in different seasons suggests that stable isotope composition of benthic
macroinvertebrates is quite temporally stable compared to differences among lakes.
Nonetheless, we recommend that SCALE sampling be focused on the May-Sept warm season to
minimize any minor seasonal effects. The medium- and high-intensity lakes may offer an
opportunity to further test for finer-scale seasonality of stable isotope ratios within a lake.
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Second, our pilot sampling indicated that benthic macroinvertebrate communities vary
widely across lakes, complicating the design of a simple, consistent set of taxa for comparisons
across SCALE lakes. Despite this heterogeneity in benthic macroinvertebrate communities, we
were able to identify a portfolio of taxa that can be found across most sites and will provide a
robust baseline for cross-lake comparisons. Differences in benthic macroinvertebrate
communities reflected the availability of various habitat types; large, deep lakes had different
nearshore communities compared to shallow, boggy lakes. Additionally, we aimed to determine
if the benthic macroinvertebrate communities can reveal food web patterns within Adirondack
lakes. We observed that the benthic macroinvertebrate communities adequately represented
the range of isotopic composition of fish tissues within lakes where both were sampled. We also
observed expected differences in isotopic compositions between the benthic macroinvertebrate
functional guilds, suggesting that stable isotope ratios are functioning well to showcase the
trophic diversity of benthic macroinvertebrate communities.

For our third objective, we evaluated the usefulness of §2H and &3*S as tracers of
terrestrial energy sources and environmental deoxygenation, respectively. We found that §2H
displayed the expected relationship with terrestrial subsidies (in the form of DOC), suggesting
that measuring hydrogen isotopes from a modest subset of samples will be useful to describe
differences among lake food webs in terrestrial energy inputs. In contrast, there were no clear
patterns of §34S with respect to observed deep-water deoxygenation. Further work would be
needed to resolve appropriate inferences from &34S in Adirondack lakes.

Our fourth and final objective was to determine how many different sites within a lake
should be sampled to represent isotopic baselines using benthic macroinvertebrates. We found
moderate spatial variation among sites in a few lakes, but most lakes exhibited consistent
isotopic composition of benthic macroinvertebrate communities across sites. Therefore, we
recommend sampling from multiple sites per lake in order to establish an isotopic baseline
against which to interpret results from fish.

This pilot study also provided an opportunity to test and refine methods for rapid
collection of invertebrates from lakes of all sizes. For nearshore samples, we conclude that
targeted searches of microhabitats favored by specific taxa will be the most efficient way to
sample macroinvertebrates for isotopic baselines. If broader collections are needed, timed
sweeps with D-frame nets were also effective but yielded large amounts of detritus that must be
sorted. Because zooplankton tows are straightforward, and zooplankton are essential as the
pelagic endmember for quantifying energy sources for the food web, we recommend collecting
samples from multiple offshore locations. Similarly, to represent terrestrial-derived energy
inputs, we recommend collecting fresh leaves from three common tree or shrub species in the
riparian zone of each lake.
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Next steps

The recommendations outlined above will be incorporated into the QAPP and field
protocols for Year-1 of full sampling for SCALE in 2025. Our most important findings are that
stable isotope samples may be collected any time during the warm season but should be
collected from multiple sites within each lake to account for potential spatial variation. To
characterize the base of the food web in each waterbody, baseline collections at each lake will be
sampled from at least three sites along the perimeter in the littoral zone and three pelagic sites.
Fish collections within the lake will occur within 1km of any baseline sampling site. In larger
waterbodies, we will sample from a maximum of 5 sampling sites to increase our chances of
encountering fish taxa that may partition the potentially more heterogeneous environment. All
baseline sampling sites will be no further than 1 mi from another site. We will not specifically
target particular habitats. We will continue to assess which macroinvertebrates are most suitable
as secondary taxa for quantifying isotopic baselines, thereby ensuring commensurate
comparisons across lakes. All these lessons will help to ensure the success of SCALE sampling in
Year-1 and beyond.

Data availability

All stable isotope and taxon information were made publicly available through the EPA’s
Water Quality Exchange (WQX) portal by the organization ID “CORNELLSCALE” under project
“SCALE".
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Appendix

Appendix A: List of Potential Low Intensity Lakes

NHDID LAT LONG PONDNAME ELEV | WAREA | SAREA | DEPTH HU8name
92080871 44.850319 | -73.850703 MOON POND 411 687 2 2 Lake Champlain
129690692 44567544 | -73.817367 WHISTLE POND 431 40 4 3 Saranac River
92081613 44.590878 -73.770697 MUD POND 359 385 7 1 Lake Champlain
129690712 44.563381 -73.913478 MUD POND 418 946 44 2 NA
129690762 44543939 | -74.079872 LINE POND 511 10 2 11 NA
129690817 44527550 | -74.103206 LAKE KUSHAQUA 509 7387 153 28 Saranac River
129690806 44,515883 -74.124875 LITTLE HOPE POND 521 38 3 6 NA
129690808 44511994 -74.124597 BIG HOPE POND 522 194 9 12 NA
129690813 44505883 | -74.114319 BUCK POND 507 388 53 4 Saranac River
129690823 44.488661 | -74.134319 RAINBOW LAKE 508 1707 144 18 Saranac River
129690850 44.470608 -74.176544 RAINBOW LAKE INLET 508 980 35 3 Saranac River
129690852 44.476442 | -74.177378 UNNAMED POND 512 10 1 8 Saranac River
129690838 44.487553 | -74.166819 LOON POND 513 128 8 5 Saranac River
129690868 44.436158 -73.974036 FRANKLIN FALLS FLOW 446 76491 184 6 Saranac River
129690895 44.365883 | -74.065986 MOOSE POND 472 1862 57 21 Saranac River
129690928 44.324217 | -74.074597 MCKENZIE POND 506 702 97 16 Saranac River
129691038 44.260047 | -74.038208 ALFORD POND 596 96 14 1 Saranac River
129691088 44.259775 -74.150992 LITTLE PINE POND 488 105 2 2 Saranac River
129691035 44.283386 | -74.171269 SECOND POND 468 33362 33 3 NA
129691035 44.288664 | -74.183492 FIRST POND 468 33172 29 6 NA
129690922 44.333942 | -74.153489 LAKE COLBY 474 920 110 14 Saranac River
129690924 44.351167 -74.209047 MCCAULEY POND 476 159 31 4 Saranac River
129691110 44.250058 | -74.282942 BARTLETT POND 475 11 1 2 Saranac River
129691099 44.284781 -74.359053 BRANDY POND 488 128 2 3 Saranac River
129691020 44310614 | -74.345442 FOLLENSBY CLEAR POND 480 1029 196 18 Saranac River
129691003 44.326447 | -74.355719 POLLIWOG POND 486 332 84 24 Saranac River
129691008 44336725 | -74.367108 WEST POLLIWOG POND 486 7 1 6 NA
129691154 44302836 | -74.364608 SQUARE POND 480 427 58 17 Saranac River
129691056 44.308600 | -74.355730 LITTLE ECHO POND 479 7 1 5 Saranac River
129691083 44.300892 -74.397667 LITTLE EGG POND 487 4 0 10 NA
129691085 44.299503 | -74.389889 DUMP POND 485 223 12 4 NA
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129691061 44.307281 -74.368497 S-W AMPHITHEATER POND 480 2 0 7 NA
129691051 44.312003 -74.371831 EAST COPPERAS POND 479 15 4 6 NA
129691055 44.313947 -74.383778 NORTH WHEY POND 488 9 1 8 NA
129691046 44.316169 -74.382944 LITTLE NORTH WHEY 488 9 1 5 NA
129691004 44.337003 -74.371553 MIDDLE POND 484 182 24 3 NA
129691011 44,337558 -74.394333 UNNAMED POND 485 53 3 5 Saranac River
129691001 44.343392 -74.397111 MARSH POND 494 12 2 7 NA
129691017 44.339781 -74.411833 EAST PINE POND 484 115 26 10 Saranac River
129690990 44.353114 -74.413222 PINK POND 492 221 5 4 Saranac River
129690981 44.355614 -74.416000 NORTH PINK POND 489 41 2 3 Saranac River
129690942 44.368947 -74.392664 LONG POND #3 494 22 1 1 Saranac River
129690952 44.365614 -74.383219 SLANG POND 491 1013 20 7 Saranac River
129690949 44.358114 -74.359053 HOEL POND 493 652 182 24 Saranac River
129690964 44.347836 -74.336275 CHURCH POND 492 52 11 18 NA
129691034 44.326447 -74.411278 UNNAMED POND 480 4 1 3 Saranac River
129691090 44.323669 -74.409611 ROLLINS POND 480 2996 180 24 Saranac River
129691053 44.317281 -74.424611 UNNAMED POND LOWER 482 221 4 4 NA
129691060 44.304225 -74.398778 WHEY POND 481 133 43 6 Saranac River
129691107 44.276169 -74.387667 DEER POND 490 174 47 20 Saranac River
129690983 44.338114 -74.343219 GREEN POND 481 135 26 18 Saranac River
129690946 44.352833 -74.311272 RAT POND 492 79 12 9 Saranac River
129690961 44.344778 -74.300161 SUNDAY POND 485 109 4 11 NA
129690930 44.355333 -74.285439 LITTLE CLEAR POND 487 631 142 24 Saranac River
129690936 44.358667 -74.297383 LITTLE GREEN POND 488 69 28 12 NA
129690919 44.372278 -74.289328 GRASS POND 492 39 8 10 Saranac River
129690945 44.352278 -74.294328 SOCHIA POND 500 10 2 6 NA
129690937 44.348389 -74.276828 LAKE CLEAR OUTLET 491 2803 47 3 Saranac River
129690937 44.348389 -74.276828 LAKE CLEAR OUTLET 491 2803 47 3 Saranac River
129690910 44.379500 -74.261269 ST. GERMAIN POND 497 47 5 5 Saranac River
129690921 44.368944 -74.277383 CONLEY LINE POND 497 24 1 5 Saranac River
129691103 44.267558 -74.290997 TAMARACK POND 472 222 6 3 Saranac River
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115353579 44.480881 -73.716253 UNNAMED POND 375 15 2 2 Ausable River
115353631 44.424214 -73.849311 MORGAN(COOPER KILL) POND 922 26 1 1 Ausable River
115353747 44.330881 -73.917092 WARREN POND 561 70 2 4 Ausable River
115353767 44.323103 -73.902922 OWEN POND 515 1139 8 9 Ausable River
115353749 44.329214 -73.881533 MARSH POND 558 263 4 1 Ausable River
115353811 44.294214 -73.942647 BIG CHERRYPATCH POND 504 230 5 5 Ausable River
115353787 44.307825 -73.942092 TOM PECK POND 521 122 4 5 Ausable River
115353799 44.295881 -73.965425 ECHO LAKE 570 61 7 2 Ausable River
115353875 44.242269 -73.883756 UNNAMED POND 685 40 0 2 Ausable River
115353967 44.148664 -74.037650 SCOTT POND 972 94 1 2 Ausable River
115353949 44.179772 -73.967092 HEART LAKE 661 63 11 17 NA
115353777 44.316158 -73.760694 CLEMENTS POND 503 60 2 6 Ausable River
115353869 44.247547 -73.879589 UNNAMED POND 678 22 1 1 Ausable River
115353879 44.237825 -73.860144 LOWER CASCADE LAKE 618 505 10 13 Ausable River
115353909 44.224492 -73.874033 UPPER CASCADE LAKE 620 231 10 19 Ausable River
115353849 44.256992 -73.712639 LOST POND 863 38 1 1 Ausable River
115353975 44.143939 -73.738469 GIANT WASHBOWL 695 46 1 7 Ausable River
92082313 44.284772 -73.556244 BIG POND 188 1115 22 2 NA
115353641 44.399492 -73.651528 DOYLE POND 262 336 4 4 Ausable River
92083097 44116164 | -73.559853 RUSSET POND 454 555 9 11 Lake Champlain
92083105 44.109775 -73.549850 TANAHER POND 461 O 5 4 Lake Champlain
92083099 44.112553 -73.541239 FIFTH POND 465 10 1 6 Lake Champlain
92083133 44.123108 -73.723189 BULLET POND 469 17 0 1 Lake Champlain
92083129 44.123942 -73.732081 ROUND POND 527 132 9 11 Lake Champlain
92083177 44.100608 -73.723744 LILYPAD POND 465 40 1 1 Lake Champlain
92083153 44.106164 | -73.708467 CRANBERRY POND 482 9 1 1 Lake Champlain
92083329 43.867003 -73.575403 BEAR POND 430 122 5 4 Lake Champlain
92083363 43.821172 -73.547900 LOST POND 479 56 11 10 Lake Champlain
92083367 43.839228 -73.571792 PUTNAM POND 399 1933 70 10 Lake Champlain
92083355 43.837839 -73.594014 CLEAR POND 432 65 11 18 Lake Champlain
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92083365 43.834228 -73.591236 MUD POND 457 267 1 2 Lake Champlain
92083367 43.837561 -73.582347 NORTH POND 399 148 42 5 Lake Champlain
92083573 43.598400 -73.534561 LOWER BLACK MTN POND 518 135 2 4 Lake Champlain
92083569 43.597844 | -73.525117 UPPER BLACK MTN POND 518 39 1 4 NA
92083521 43.657842 -73.578175 BROWN POND 277 27 1 4 Lake Champlain
92083515 43.682842 -73.644289 LONG POND 399 114 13 12 Lake Champlain
165902470 43.708397 -73.616233 UNNAMED POND 451 47 3 2 Lake Champlain
92083457 43.710342 -73.530675 JABE POND 400 230 60 23 Lake Champlain
92083451 43.712564 | -73.537064 LITTLE JABE POND 419 20 2 7 Lake Champlain
92083575 43.593122 -73.516228 LAPLAND POND 524 169 4 5 Lake Champlain
92083583 43.592844 | -73.521783 UNNAMED POND 524 110 0 2 Lake Champlain
92083601 43.588400 -73.527339 MILLMAN POND 571 41 2 7 Lake Champlain
92083613 43.573678 -73.536228 FISHBROOK POND 559 167 14 17 Lake Champlain
165902469 43.560622 -73.550950 BUMPS POND 582 31 2 6 NA
92083725 43.497292 -73.578725 CROSSET POND 446 147 41 32 Lake Champlain
52532837 43.430625 -73.557892 COPELAND POND 137 343 23 8 Mettawee River
52532673 43.465625 -73.602339 THIRD POND 381 108 3 15 Mettawee River
52532909 43.414514 | -73.577058 HADLOCK LAKE 138 2269 84 13 Mettawee River
52532543 43.493681 -73.585669 INMAN POND 411 44 3 9 Mettawee River
52532659 43.473125 -73.550669 LAKE NEBO 255 374 50 23 Mettawee River
52533243 43.352847 -73.755119 WILKIE RESERVOIR 395 64 10 6 Mettawee River
132876070 44.753375 -73.893200 BRADLEY POND 501 1656 44 3 Chateaugay-English
132876232 44.691711 -73.958478 UNNAMED POND 489 1997 1 2 Chateaugay-English
132876274 44.675322 -73.962089 NORTH TWIN POND 532 104 10 2 Chateaugay-English
132876286 44.671433 -73.966256 SOUTH TWIN POND 532 57 5 2 Chateaugay-English
132876194 44.723100 -74.040425 MOUNTAIN POND 594 163 4 1 Chateaugay-English
132876139 44.764494 | -74.190992 PETER POND 803 264 5 2 Chateaugay-English
132876182 44.750050 -74.187658 OWLSHEAD POND 423 2 0 2 Salmon
132876179 44.748939 -74.185436 CHILDS POND 442 30 1 2 Salmon
132876224 44.738383 -74.181267 FISHPOLE POND 450 45 2 2 Salmon
132876478 44.630050 -74.199600 DEBAR POND 477 747 35 9 Salmon
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132876501 44.597550 -74.137653 DUCK POND 500 230 24 4 Salmon
132876492 44.601439 -74.126819 RAZORBACK POND 504 9 1 4 Salmon
132876128 44.769492 -74.110708 INGRAHAM POND 501 523 54 5 Salmon
132876321 44.705325 -74.136264 MOUNTAIN VIEW LAKE 453 11474 97 3 NA

167435690 44.690881 -74.107931 DEERFLY POND 459 103 0 2 Salmon
132876535 44.707544 -74.066539 RAGGED LAKE 528 3109 110 15 Salmon
132876536 44.744489 -74.065147 LOWER LILYPAD POND 532 980 6 2 NA

132876340 44.680325 -74.099039 GRASS POND 456 8 3 3 Salmon
135270648 44.657831 -74.319886 DEER RIVER FLOW 444 7166 160 4 St. Regis
135270641 44.650608 -74.278772 SPRING POND 449 16 1 2 St. Regis
135270613 44.660331 -74.289328 HORSESHOE POND 444 1736 21 3 NA

135271176 44.558394 -74.772136 CLEAR POND 396 52 14 7 Raquette
135271593 44.357836 -74.430722 OTTER POND 518 27 5 16 NA

135271580 44.382283 -74.437389 EAST POND 527 295 28 3 St. Regis
135271558 44.380892 -74.386831 BESSIE POND 496 205 7 15 St. Regis
135271488 44.397281 -74.378775 SKY POND 512 27 3 3 St. Regis
135271547 44.377003 -74.346831 GRASS POND 503 222 9 4 St. Regis
135271498 44.381722 -74.300439 GREEN POND 493 44 9 9 St. Regis
135271564 44.366722 -74.311550 SOUTH OTTER POND 491 168 3 3 St. Regis
135271555 44.370611 -74.313494 NORTH OTTER POND 494 102 1 3 St. Regis
135270908 44.590894 -74.574619 EAST POND 410 45 4 2 St. Regis
135270708 44.661447 -74.500447 MUD POND 395 16 3 1 St. Regis
135270716 44.657281 -74.495447 GRASS POND 384 36 2 7 St. Regis
135270711 44.660614 -74.497669 LITTLE CLEAR POND 384 36 2 14 NA

135270885 44.545886 -74.266825 NORTHERN STAR MTN. POND 510 56 1 1 St. Regis
135271022 44.518944 -74.298769 WARD POND 486 49 1 2 St. Regis
135271076 44.502833 -74.292658 UNNAMED POND 476 11 0 7 St. Regis
135271236 44.462000 -74.283492 LOST POND 518 27 2 4 NA

135271075 44.492278 -74.254047 BEAVER VALLEY POND 503 64 4 2 St. Regis
135271223 44.450331 -74.200156 JONES POND 504 1132 57 3 St. Regis
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167401934 44.620336 -74.482392 UNNAMED POND 442 27 1 4 St. Regis
135271288 44.446444 -74.293494 UNNAMED POND 515 51 1 3 NA
135271322 44.436722 -74.300994 BLACK POND 498 344 29 14 NA
135271335 44.431722 -74.270436 LOWER ST. REGIS LAKE 494 4427 142 12 St. Regis
135271484 44.384500 -74.282939 ROILEY POND 499 355 6 4 St. Regis
135271461 44.389778 -74.292106 LITTLE LONG POND 504 243 33 18 St. Regis
135271439 44.391167 -74.276828 MIKES POND 497 2 1 10 NA
135271422 44.394500 -74.282383 HUMDINGER POND 506 9 1 9 St. Regis
132858821 44.412006 -75.043811 HORSESHOE POND 308 73 7 13 Grass
132859738 44.445342 -74.984919 CRANBERRY POND 302 300 8 1 Grass
132858629 44.465342 -74.961308 TWIN POND UPPER 332 12 2 4 Grass
132858799 44.379786 -74.769631 CHURCH POND 472 120 10 3 Grass
132858801 44.391175 -74.871858 BLUE POND 395 39 2 20 Grass
132858934 44.337006 -74.809356 CLEAR POND 445 53 12 3 Grass
132859654 44.231728 -74.820742 SILVER LAKE 452 145 45 6 NA
132859257 44.271450 -74.762131 SAMPSON POND 457 372 27 2 Grass
132859261 44.263672 -74.768797 EGG POND 466 5 0 1 Grass
132859085 44.282839 -74.691569 CARTRIDGE HILLS POND 3 472 4 1 7 Grass
132859280 44.255061 -74.744350 GRASS RIVER FLOW 460 11763 14 2 NA
132859126 44.267561 -74.639622 CATAMOUNT POND 462 536 41 3 NA
132859339 44.227006 -74.665178 TOWNLINE POND 466 40 16 15 Grass
132859255 44.240061 -74.657956 BOOTTREE POND 463 24 6 15 NA
132859648 44.212283 -74.709069 BURNTBRIDGE POND 490 345 22 2 Grass
133098522 44.223117 -75.204369 PORTAFERRY LAKE 262 244 32 24 Oswegatchie
133098794 44.160342 -75.204644 LONG LAKE 331 134 9 6 Oswegatchie
133098835 44.146731 -75.155753 DRY TIMBER LAKE 424 520 9 8 Oswegatchie
133099091 44.080064 -75.203528 LITTLE SILVER DAWN LAKE 378 106 3 2 NA
133099100 44.065619 -75.128803 UNNAMED POND 445 1515 2 1 NA
133099412 43.961453 -75.044908 LOON HOLLOW POND 607 60 6 12 NA
133099268 43.995342 -75.049908 BRINDLE POND 539 16 1 2 Oswegatchie
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133099411 43.958675 -75.009908 BEAR POND 623 238 32 29 Oswegatchie
133099321 43.972286 -74.955183 WILLYS LAKE (HORSESHOE) 630 156 24 14 NA
133099276 43.979508 -74.952961 UNNAMED POND 625 40 0 1 Oswegatchie
133099361 43.995344 -75.200189 ROCK POND 411 6822 8 10 NA
133098391 44.263117 -75.130203 PARTLOW POND 298 359 7 9 Oswegatchie
133098458 44.242006 -75.154369 TITUS POND 302 14 1 4 NA
133098403 44.253117 -75.109089 DODGE POND 307 101 6 7 Oswegatchie
133098764 44.151453 -75.050750 READWAY POND 424 1 1 2 Oswegatchie
133098898 44.110897 -75.071025 STREETER LAKE 453 339 28 5 Oswegatchie
133098933 44.101731 -75.054358 UNNAMED POND 454 1475 4 1 Oswegatchie
133098922 44.100897 -75.068247 CRYSTAL LAKE 453 22 6 8 Oswegatchie
133098502 44.189783 -74.925192 UNNAMED POND 456 173 4 2 NA
167248139 44.214228 -74.986306 UNNAMED(NEWTON FALLS)RES 433 43686 78 10 NA
167248139 44.214228 -74.986306 UNNAMED(NEWTON FALLS)RES 433 43686 78 10 NA
133098575 44.195617 -75.001583 BEAVER POND 454 106 11 5 Oswegatchie
133098510 44.159506 -74.721847 LITTLE DOG POND 556 58 2 1 Oswegatchie
133098759 44.112839 -74.797961 FISHPOLE POND 524 482 6 6 Oswegatchie
133098754 44.122283 -74.849631 SIMMONS POND 521 64 7 19 Oswegatchie
133098761 44.128394 -74.924911 UNNAMED POND (MILL POND) 456 432 3 1 Oswegatchie
133099041 44.052564 -74.949908 BIG SHALLOW POND 510 177 3 1 Oswegatchie
133099058 44.048675 -74.952686 LITTLE SHALLOW POND 512 141 3 2 Oswegatchie
133098913 44.066450 -74.840461 BIG DEER POND 533 160 23 2 Oswegatchie
133099147 44.026175 -74.904906 OVEN LAKE 611 590 21 12 NA
133099147 44.026175 -74.904906 OVEN LAKE 611 590 21 12 NA
133099147 44.017286 -74.904906 GRASSY POND 611 411 12 8 NA
133099147 44.017286 -74.904906 GRASSY POND 611 411 12 8 NA
133099140 44.008117 -74.859350 JENKINS POND 549 12 1 6 Oswegatchie
131843092 43.918678 -75.223519 SOFT MAPLE RESERVOIR 392 61268 128 18 NA
131843830 43.882567 -75.161294 BEAVER LAKE 435 50350 95 9 NA
131844118 43.858956 -75.170739 FRANCIS LAKE 440 533 55 7 NA
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131843550 43.871733 -75.093239 UNNAMED POND 500 66 1 2 Black
131843906 43.853678 -75.098239 UNNAMED POND 512 17 1 2 Black
131843874 43.854233 -75.093794 UNNAMED POND 500 52 2 2 Black
131843281 43.886456 -75.108517 MOSHIER RESERVOIR 500 47141 114 23 Black
131841894 43.932011 -75.053797 SUNSHINE POND 589 215 27 15 NA

131841662 43.947286 -74.995186 UNNAMED POND 625 47 9 6 Black
131841569 43.953119 -74.983239 DISMAL POND 621 204 22 5 Black
131841526 43.944508 -74.888236 UNNAMED POND 515 147 9 2 NA

131842175 43.893953 -74.817678 TERROR LAKE 618 418 25 4 NA

131843078 43.870380 -74.952250 WOODS LAKE 607 204 25 10 NA

131843653 43.834233 -74.917122 SNAKE POND 588 1452 7 7 Black
131843383 43.841175 -74.892956 TWITCHELL LAKE 625 732 58 10 Black
131843116 43.854231 -74.870733 LILYPAD POND LOWER 628 88 9 5 Black
131844565 43.839792 -75.280183 CRYSTAL LAKE 378 207 31 14 Black
131845121 43.772292 -75.266847 MAHAN POND 387 12 1 4 NA

131844966 43.780347 -75.222958 NORTH POND 407 184 2 2 Black
131844924 43.793958 -75.291017 PAYNE LAKE 375 42 7 7 Black
131844590 43.832292 -75.262406 GOURD POND 357 90 1 1 Black
131844627 43.815344 -75.181847 MIKES POND 472 59 1 5 Black
131845681 43.720903 -75.286289 PITCHER POND 364 19 2 8 Black
131845110 43.733678 -75.017678 UNNAMED POND 559 508 4 1 Black
131845875 43.684792 -75.275456 BRANTINGHAM LAKE 376 1232 132 23 Black
131846204 43.639792 -75.262397 GARRIT LAKE 376 156 2 5 Black
131845717 43.683958 -75.099619 MIDDLE SETTLEMENT LAKE 526 98 16 11 NA

131845625 43.693403 -75.084342 CEDAR POND 518 702 3 6 Black
131845587 43.690347 -75.064619 GRASS POND 546 237 5 5 NA

131845583 43.697847 -75.101842 MIDDLE BRANCH LAKE 494 363 17 5 Black
131846283 43.624792 -75.246286 UNNAMED POND 376 217 9 2 Black
131845488 43.694789 -75.007953 WINDFALL POND 522 34288 16 5 Black
131844983 43.737011 -74.972397 ROUND POND 528 12 4 7 NA

131844538 43.788956 -74.949622 BIG DIAMOND POND 613 84 3 8 NA
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131844719 43.756456 -74.916008 LAKE RONDAXE 524 14283 91 10 NA
131844809 43.749233 -74.901286 FLY POND 565 208 2 3 Black
131844377 43.781178 -74.852675 MOSS LAKE 536 1315 46 15 Black
131844130 43.789231 -74.812394 CASCADE LAKE 553 475 40 6 Black
131844532 43.774789 -74.846561 BUBB LAKE 553 186 18 4 NA
131844150 43.793400 -74.870731 DART LAKE 536 10757 52 18 NA
131844009 43.805064 | -74.831008 WINDFALL POND 601 44 2 6 Black
131843856 43.828064 | -74.854500 BIG MOOSE LAKE 556 9585 513 21 NA
131844064 43.811456 -74.882953 WEST POND 585 108 10 5 NA
131843739 43.825622 -74.886011 SQUASH POND 648 41 3 6 NA
131842612 43.855342 -74.725728 OTTER POND 649 118 5 3 Black
131842438 43.871731 -74.777397 LOWER SISTER LAKE 588 1598 34 3 NA
131842438 43.878953 -74.768508 UPPER SISTER LAKE 588 1409 32 4 NA
131843304 43.830619 -74.807119 CONSTABLE POND 582 945 21 4 NA
131844592 43.765067 -74.842117 SURPRISE POND 526 15 2 2 Black
131844242 43.763675 -74.729336 BUG LAKE 614 132 32 24 Black
131843989 43.770064 -74.712947 EIGHTH LAKE FULTON CHAIN 546 823 123 25 Black
131845967 43.641736 -75.021281 BLOODSUCKER POND 582 204 3 6 Black
131845700 43.671456 -74.995450 NICKS LAKE 519 1053 84 5 Black
131845700 43.673122 -74.986283 UNNAMED POND 519 441 2 2 Black
131846085 43.620903 -75.029892 UNNAMED POND 493 194 1 2 Black
131844984 43.713400 -74.812669 LIMEKILN LAKE 576 1393 187 22 NA
131845383 43.676733 -74.814056 UNNAMED POND 643 33 2 2 NA
131845343 43.673956 -74.819056 UNNAMED (KETTLE) POND 646 21 3 13 NA
131845523 43.651178 -74.751833 BEAVER LAKE 559 916 55 5 NA
131845641 43.636178 -74.738497 SQUAW LAKE 645 177 36 7 NA
131845751 43.628400 -74.747386 UNNAMED POND 637 36 1 4 Black
131845836 43.623400 -74.761831 INDIAN LAKE 654 1061 33 11 NA
131846180 43.566733 -74.792383 UNNAMED POND 722 376 3 1 Black
131846215 43.562567 -74.812939 TWIN LAKE LOWER 739 75 1 2 NA
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131846215 43.562567 -74.812383 TWIN LAKE UPPER 740 66 2 5 NA
131846038 43.582289 -74.750439 CARTER MUDHOLE 674 67 1 3 Black
131845673 43.618122 -74.641828 TWIN LAKES WEST 810 302 1 1 NA
131845673 43.617567 -74.641272 TWIN LAKE WEST 810 287 8 7 NA
131845673 43.620344 -74.635161 TWIN LAKE EAST 811 139 8 3 NA
131845828 43.600067 -74.662106 BROOK TROUT LAKE 722 177 29 23 NA
131845255 43.666178 -74.703219 ICEHOUSE POND 566 27 3 13 NA
131845216 43.669511 -74.699608 HELLDIVER POND 566 85 7 3 Black
131844990 43.688122 -74.665719 LOST POND 584 2426 9 2 NA
131845210 43.646733 -74.557936 LOST POND 584 138 4 1 NA
131846683 43.536736 -75.170444 DEER POND 430 25 4 4 Black
131846452 43.588403 -75.132947 LOST POND 473 31 1 6 Black
131846419 43.587014 -75.126003 OTTER LAKE 462 598 56 3 Black
131846566 43.551458 -75.067667 GULL LAKE 540 212 50 3 NA
131846593 43.512090 -74.890750 SOUTH LAKE 615 1644 197 18 NA
131846580 43.522847 -74.947661 NORTH LAKE 555 8126 177 18 NA
131846146 43.573678 -74.821275 MONUMENT LAKE 759 33 6 2 Black
50520955 43.233961 -73.848456 BULLHEAD POND 186 28 2 4 Hudson-Hoosic
47725669 43.270072 -73.949847 UNNAMED POND 314 54 1 1 Sacandaga
47725761 43.264239 -73.919014 JENNY LAKE 377 805 36 8 Sacandaga
47726211 43.235628 -73.989294 MINER MILL VLY 477 558 3 2 Sacandaga
47726908 43.188961 -73.947347 LITTLE LAKE 552 21 1 1 Sacandaga
47723995 43.332847 -74.210411 MIDDLE LAKE 456 66 12 7 Sacandaga
47723267 43.355347 -74.097353 TENANT LAKE 507 686 28 6 Sacandaga
47722741 43.399792 -74.156800 WILCOX LAKE 440 281 54 15 Sacandaga
47724701 43.298403 -74.078742 UNNAMED POND 399 280 8 2 Sacandaga
47723283 43.371458 -74.245969 WILLIS LAKE 397 139 15 3 NA
47722841 43.390625 -74.519036 SPY LAKE 505 904 151 9 Sacandaga
47721675 43.477014 -74.553486 DEER POND 710 59 1 1 Sacandaga
47721563 43.479792 -74.504875 FALL LAKE 512 4241 10 4 Sacandaga
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47722273 43.432292 -74.509872 SILVER POND 512 22 1 5 Sacandaga
47724773 43.302292 -74.585425 JOCKEYBUSH LAKE 599 149 17 11 NA
47725511 43.273681 -74.544867 TROUT LAKE 503 465 8 4 Sacandaga
47725595 43.274236 -74.482642 ROSS LAKE 549 28 1 3 Sacandaga
47720751 43.538678 -74.117356 EAGLE POND 503 156 2 9 Sacandaga
47719461 43.671453 -74.169308 TWIN POND (LOWER) 638 222 6 1 Sacandaga
47719523 43.659786 -74.085414 SECOND POND 683 476 18 4 Sacandaga
47719269 43.689231 -74.074581 THE VLY POND 617 408 9 2 Sacandaga
47721246 43.507289 -74.419592 SOUND LAKE 527 70 8 3 Sacandaga
89363837 43.826453 -73.910689 OLIVER POND 455 140 17 4 Upper Hudson
89363491 43.866175 -73.972361 HEWITT POND 517 751 67 17 Upper Hudson
89364221 43.785619 -73.818464 MARSH POND 332 115 4 5 NA
89363585 43.855061 -73.817078 BIG POND 390 639 25 6 Upper Hudson
89363847 43.825339 -73.710406 HARRISON MARSH POND 314 276 2 3 NA
89363979 43.812839 -73.704294 SPECTACLE POND (UPPER) 354 164 7 6 Upper Hudson
89364311 43.775342 -73.659569 CRAB POND 320 130 5 10 Upper Hudson
89363721 43.843672 -73.677906 GOOSE POND 359 116 27 31 Upper Hudson
89363549 43.855617 -73.640403 UNNAMED POND 331 764 9 2 NA
89362641 43.972833 -73.563736 MUD POND 354 35 3 2 NA
89362411 43.993947 -73.827358 CLEAR POND 583 601 70 24 NA
167103332 44.065056 -73.811247 DIX POND 680 481 2 1 Upper Hudson
89362515 43.986167 -73.706797 GERO POND 280 5756 7 3 Upper Hudson
89362319 44.016722 -73.638186 HOWARD POND 374 58 5 ) Upper Hudson
89362289 44.019778 -73.632353 BROTHERS POND (LOWER) 381 71 3 6 Upper Hudson
167100585 43.970611 -73.611517 BLACK BROOK POND (LOWER) 338 316 1 2 NA
89362321 44.018111 -73.705131 JUG POND 600 45 3 1 Upper Hudson
89365911 43.491178 -73.912347 BEAR POND 390 215 16 4 Upper Hudson
89364705 43.722286 -73.936242 BIRD POND 334 951 8 9 NA
89364879 43.717842 -74.117361 THIRTEENTH LAKE 510 2849 133 15 Upper Hudson
89363765 43.840897 -74.019028 RANKIN POND 579 142 6 5 Upper Hudson
89363743 43.844231 -74.024861 LITTLE RANKIN POND 611 265 1 1 Upper Hudson
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89363785 43.838675 | -73.985136 STONY POND 633 298 24 7 NA
89362763 43.957839 | -73.932361 WOLF POND 557 | 1558 24 5 Upper Hudson
89363569 43.859231 | -74.092922 NATE POND 614 116 8 6 NA
89364195 43.781175 | -74.255428 LAKE ADIRONDACK 506 | 378 80 6 NA
89365099 43.677008 | -74.246256 ROUND POND 566 519 57 3 NA
89364351 43.771453 | -74.212369 LAKE SNOW 515 | 2814 30 3 Upper Hudson

{CES7EADF-187C-
4AFB-

95231D0345861DE0} | 43.649511 | -74.389872 LEWEY LAKE 503 | 6900 149 18 NA
89365087 43.683675 | -74.296258 CROTCHED POND 555 534 26 9 NA
89365939 43.495069 | -74.565986 JESSUP LAKE 735 83 4 6 NA
89365529 43592289 | -74.427372 MASON LAKE 547 195 37 6 Upper Hudson
89363601 43.855342 | -74.315708 UNNAMED POND 534 35 4 3 Upper Hudson
89363677 43.853397 | -74.329600 BARKER POND 562 34 3 4 Upper Hudson
89363899 43.829508 | -74.436269 CASCADE POND 650 | 638 14 7 Upper Hudson
89363813 43.837564 | -74.480161 LONG POND 570 26 2 4 NA
89363781 43.840342 | -74.471272 GRASSY POND 564 22 3 1 Upper Hudson
89365069 43.681733 | -74.488767 CARRY POND 649 20 3 5 Upper Hudson
120023791 43.629233 | -74.536269 CEDAR LAKE 744 | 976 149 12 NA
120023791 43.627289 | -74.551547 BEAVER POND 744 | 325 35 1 NA
89363049 43.930619 | -74.214319 BATES POND 515 46 2 2 Upper Hudson
89362727 43.970064 | -74.129594 HARRIS LAKE 473 | 9133 116 12 Upper Hudson
89362525 43.987920 | -74.241820 ARBUTUS LAKE 513 365 48 8 Upper Hudson
89362643 43.977564 | -74.270156 COUNTY LINE FLOW 505 | 6671 25 2 NA
89361879 44.111444 | -73.988203 LIVINGSTON POND 846 27 1 7 Upper Hudson
89361867 44119219 | -73.982647 LAKE COLDEN 842 645 15 7 Upper Hudson
89361863 44.130886 | -73.969867 AVALANCHE LAKE 873 115 4 7 NA
132433284 44547561 | -74.792136 ROCK POND 405 125 7 8 Raquette
132433360 44529786 | -74.843525 FIVE FALLS RESERVOIR 328 | 241396 | 59 12 NA
132433312 44.538953 | -74.768244 LONG POND 405 110 9 6 Raquette
132433418 44.482842 | -74.739911 JOE INDIAN POND 394 | 5312 138 3 NA
132433489 44.435064 | -74.626011 KETTLE POND 460 21 3 11 NA
132433630 44.368672 | -74.554339 ROCK POND 467 369 17 2 NA
132433673 44345894 | -74.506558 UNNAMED POND 478 7 1 8 NA
132433730 44317006 | -74.515447 SUNSET POND 466 352 3 2 Raquette
132433819 44310894 | -74.721294 UNNAMED POND 444 11 0 3 Raquette
132433779 44.278114 | -74.418778 LEAD POND 483 289 34 4 NA
132433789 44.278392 | -74.424056 UNNAMED POND 488 13 2 2 NA
132433786 44292283 | -74.488503 NORTH SPECTACLE POND 484 44 3 4 Raquette
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132435716 44.080339 -74.652953 BEAR POND 568 543 61 8 Raquette
132435382 44.083950 | -74.526558 UNNAMED POND 539 24 0 6 NA
132435146 44.130617 | -74.629064 HORSESHOE LAKE 526 1254 161 5 Raquette
132435590 44.088672 -74.657675 TROUT POND 542 239 63 25 Raquette
132435630 44.085339 -74.659064 HIGH POND 573 47 16 17 Raquette
132436462 44.092561 -74.738236 SECOND POND 531 7158 15 15 NA
132435369 44.120617 | -74.717403 LAKE MARION 607 519 83 47 NA
132436462 44.065339 -74.803236 TOMAR POND 531 78 2 6 NA
132436462 44.085339 -74.799628 GRASS POND 531 449 49 11 NA
132434585 44.161728 -74.442944 LITTLE SIMON POND 545 737 58 32 NA
132433915 44.228392 -74.338497 PANTHER POND 524 45 5 6 Raquette
132434170 44.206169 -74.344053 ROLL BANK POND 472 30 2 4 Raquette
132434021 44.217836 -74.317942 UNNAMED (CALKINS) POND 475 20 1 3 NA
132434641 44.125617 -74.311828 MIDDLE COUNTY LINE POND 518 51 1 5 Raquette
132434592 44.128394 -74.311828 UPPER COUNTY LINE POND 518 29 1 3 Raquette
132434565 44.127561 -74.250714 SEWARD POND 625 119 2 2 Raquette
132434483 44.128947 -74.136819 ROCK POND 710 84 2 1 Raquette
132433964 44.181164 -74.074042 MOOSE POND 685 975 10 5 NA
132436516 43.970617 -74.404050 SHAW POND 533 839 10 2 Raquette
132436973 43.928672 -74.454328 SOUTH POND 538 5445 173 17 Raquette
132435874 44.029506 -74.451275 MOSQUITO POND 564 46 3 1 Raquette
132437323 43.861175 -74.556831 MIDDLE SARGENT POND 556 48 5 3 Raquette
150679585 43.838953 -74.627667 ELDON LAKE 537 208 48 4 Raquette
132437375 43.834786 -74.543219 UTOWANA LAKE 545 5829 122 7 Raquette
132437273 43.862008 -74.493772 PINE POND 564 207 2 2 Raquette
132437129 43.877008 -74.455439 CHUB POND 586 130 5 4 Raquette
132437679 43.765897 -74.628219 SAGAMORE LAKE 580 4946 68 23 NA
132437600 43.795064 -74.651000 RAQUETTE LAKE RESERVOIR 570 186 2 3 Raquette
132437583 43.804786 -74.700447 LOWER BROWNS TRACT POND 538 1236 65 10 Raquette
132437533 43.813119 -74.666281 FOX POND 537 40 1 10 Raquette
132437546 43.816731 -74.744061 SHALLOW LAKE 551 1539 108 O Raquette
132437639 43.813675 -74.806561 QUEER LAKE 597 155 55 21 NA
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132437564 43.820342 -74.776839 UNNAMED POND 639 33 4 2 Raquette
47727871 43.122572 -74.339303 WOODWORTH POND 509 175 14 19 Mohawk
53542311 43.131739 -74.490697 WEST CAROGA LAKE 443 1413 129 23 Mohawk
53541987 43.192847 -74.542644 NINE CORNER LAKE 570 205 45 15 Mohawk
53542099 43.173958 -74.510419 GREEN LAKE 472 636 18 16 Mohawk
53542015 43.188537 -74.498546 OTTER LAKE 503 361 15 4 NA
53541567 43.268681 -74.723761 MUD POND 613 34 2 5 Mohawk
53541203 43.300347 -74.633206 FERRIS LAKE 525 578 48 7 NA
53541195 43.312014 -74.611536 IRON LAKE 613 74 10 11 NA
53540805 43.368125 -75.048494 FINCH POND(LK MARGARITE) 419 106 2 2 Mohawk
53540971 43.342569 -74.965158 TOMKETTLE POND 419 51 4 4 Mohawk
53541023 43.334792 -74.959047 CURTIS LAKE 393 89 5 11 Mohawk
53541141 43.322014 -74.783208 UNNAMED POND 564 266 2 1 Mohawk
53540621 43.426458 -74.725711 WILMURT LAKE 752 273 39 11 Mohawk
53540671 43.414162 -74.632888 G LAKE 619 413 32 10 NA
53540537 43.453403 -74.578764 UNNAMED POND 753 61 3 10 NA
53540327 43.482847 -74.682656 PEA POND 736 17 2 8 Mohawk
53540525 43.457847 -74.680711 FARMERS VLY 698 71 3 1 Mohawk
53539965 43.576178 -74.575433 SAMPSON POND 731 155 25 10 Mohawk
53539963 43.580344 -74.605436 LAURENCE POND 707 100 2 1 Mohawk
135271226 44.459733 | -74.259578 BARNUM POND 504 NA 38 3 NA
132437266 43.857621 | -74.449544 BLUE MOUNTAIN LAKE 546 2972 697 31 NA
132437183 43.918026 | -74.704405 BRANDRETH LAKE 573 2298 362 54 NA
50520473 43.328701 | -73.757797 KEENAN RESERVOIR 365 NA NA NA Hudson-Hoosic
89365509 43.596668 | -73.795345 TRIPP LAKE 292 668 20 8 NA
132876387 44.646400 | -74.059998 WOLF POND 460 NA 21 15 Salmon
53542311 43.124953 | -74.480637 EAST CAROGA LAKE 442 1490 94 12 Mohawk
92083789 43.843056 | -73.431944 LAKE GEORGE 66 60347 | 11537 60 NA
131844637 43.744534 | -74.743195 SEVENTH LAKE 544 NA 385 26 Black
132876172 44.732592 | -73.969758 UPPER CHATEAUGAY LAKE 399 20856 1038 22 Chateaugay-English
89364961 43.686667 | -73.741111 BRANT LAKE 243 NA 616 18 Upper Hudson
92081293 44.747103 | -73.824032 CHAZY LAKE 470 6896 747 21 Lake Champlain
135270812 44.587254 | -74.285718 CLEAR LAKE (DUANE) 475 NA 34 18 St. Regis
89363335 43.889301 | -74.232597 FIFTH LAKE ESSEX CHAIN 489 NA NA NA Upper Hudson
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129691021 44.333848 | -74.403747 FLOODWOOD POND 480 NA NA NA Saranac River
150679608 44.156502 | -74.377998 FOLLENSBY POND 471 NA 393 31 NA
150679605 43.899994 | -74.583313 FORKED LAKE 531 NA 362 23 Raquette
89366265 43.357700 | -73.824402 FOURTH LAKE 192 NA 20 12 Upper Hudson
131844766 43.758514 | -74.840676 FOURTH LAKE 520 NA 831 20 Black
89365829 43.518681 | -74.022278 GARNET LAKE 448 2121 133 NA Upper Hudson
47721841 43.464199 | -74.315300 GILMAN LAKE 509 NA 19 18 Sacandaga
89364487 43.765767 | -74.254214 LAKE ABANAKEE 487 49953 208 NA Upper Hudson
89363797 43.844442 | -74.414764 LAKE DURANT 540 6044 117 6 Upper Hudson
132436556 43.977576 | -74.465563 LAKE EATON 523 NA 232 16 Raquette
131841110 44.002998 | -74.763000 LAKE LILA 523 NA NA NA Black
89366321 43.321389 | -73.838333 LAKE LUZERNE 190 NA 42 17 Upper Hudson
89364839 43.704163 | -73.670776 LILY POND 363 NA NA NA Upper Hudson
92083087 44.165833 | -73.566667 LINCOLN POND 314 NA 262 8 Lake Champlain
150679607 44.070080 | -74.330226 LONG LAKE 496 76376 1687 14 Raquette
89365151 43.680422 | -73.860392 LOON LAKE 264 3363 212 11 Upper Hudson
150563206 44315412 | -74.179529 LOWER SARANAC LAKE 468 32160 870 15 Saranac River
135270871 44.561601 | -74.285843 MEACHAM LAKE 473 NA NA NA St. Regis
89363811 43.832199 | -73.887901 MULLER POND 447 NA NA NA Upper Hudson
135271203 44.451070 | -74.228505 0OSGOOD POND 503 1871 209 3 St. Regis
53542005 43.197327 | -74.512693 PINE LAKE 476 1129 67 NA Mohawk
120023153 43.413146 | -74.546060 PISECO LAKE 506 NA 1153 24 Sacandaga
131844847 43.737630 | -74.871435 QUIVER 530 NA NA NA Black
150679585 43.852318 | -74.651214 RAQUETTE LAKE 537 33147 2183 29 Raquette
89363797 43.845299 | -74.438500 ROCK POND 540 NA NA NA Upper Hudson
47721625 43.484061 | -74.423762 SACANDAGA LAKE 526 NA 651 19 Sacandaga
47721625 43.483890 | -74.366110 SACANDAGA LAKE 526 NA 651 19 Sacandaga
131843435 43.901120 | -75.002096 STILLWATER RESERVOIR 512 NA 2523 10 Black
133098699 44.179600 | -75.119698 SUCKER LAKE 427 NA NA NA Oswegatchie
115353585 44.484254 | -73.863495 TAYLOR POND 424 2892 358 29 Ausable River
150679595 44.167843 -74.540089 TUPPER LAKE 471 | 178856 | 2132 26 Raquette
150563204 44.324340 -74.321925 UPPER SARANAC LAKE 482 19580 1912 26 Saranac River
89364607 43.739601 -74.467697 WAKELY POND 639 NA NA NA Upper Hudson
131846298 43.591999 -74.984703 WOODHULL LAKE 571 NA 440 27 Black
89363413 43.877690 -74.162300 CHENEY POND 501 NA 7 4 NA
47725927 43.258760 -74.529390 CHUB LAKE 501 NA 6 6 NA
115353633 44.414360 -73.719590 EATON POND 295 NA 8 4 NA
89364599 43.734750 -73.877920 HIDDEN LAKE 387 NA 12 2 NA
133098740 44.112470 -74.764950 JOHN POND 544 NA 6 8 NA
129691002 44.294740 -74.158960 KIWASSA LAKE 466 NA 114 13 NA
131841714 43.911160 -74.774240 LITTLE LILLY POND 596 NA 7 3 NA
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89364173 43.793560 -73.974440 MINERVA LAKE 370 NA 32 NA NA
131842296 43.930980 -75.073250 MOSHER PONDS 568 NA 9 11 NA
132434537 44.187130 -74.600130 MT ARAB LAKE 506 NA 50 17 NA
129691039 44.282440 -74.135880 OSEETAH LAKE 466 NA 306 5 NA
47725041 43.294300 -74.429060 SILVER LAKE 632 NA 32 10 NA
47722049 43.442970 -74.060560 ST. JOHN LAKE 675 NA 14 11 NA
53539935 43.589210 -74.563440 WHITNEY LAKE 752 NA 45 12 NA
47725937 43.254530 -74.314380 WOODS LAKE 417 NA 29 12 NA
89363021 43.932760 -74.184330 ZACK POND 568 NA 37 10 NA
53542293 43.161610 -74.537850 CANADA LAKE 472 NA 361 38 NA
132436462 44.049311 -74.767257 BOG POND 531 NA NA NA NA
133098825 44.167970 -74.839530 CRANBERRY LAKE 453 NA 2796 10 NA
89363405 43.880380 -73.586240 EAGLE LAKE 288 NA 171 12 NA
{CE57E4DF-187C-
4AFB-9523-
1D0345861DE0} 43.680820 -74.338750 INDIAN LAKE 503 NA 1893 16 NA
115353775 44.322330 -73.973780 LAKE PLACID 566 NA 797 50 NA
132436509 44.031990 -74.609790 LITTLE TUPPER LAKE 524 NA 926 11 NA
132436462 44.073120 -74.763700 LOWS LAKE 531 NA 1136 17 NA
150563205 44.261980 -74.266760 MIDDLE SARANAC LAKE 469 NA 573 17 NA
115353807 44.290500 -73.980160 MIRROR LAKE 566 NA 51 17 NA
89363377 43.886050 -73.692780 PARADOX LAKE 249 NA 378 19 NA
89364675 43.788270 -73.772980 SCHROON LAKE 246 NA 1723 44 NA
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