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SCALE Pilot Project Overview  
Waterbodies in New York State are affected by climate change, including increasing air 

temperatures, shorter winters, less ice cover, warmer and longer summers, more heatwaves, 

more precipitation, and more severe storms. Lakes in the Adirondacks serve as particularly 

sensitive sentinel indicators of climate change impacts on freshwater quality due to the quality 

of historical monitoring programs, large geographic diversity across the Park, and relatively 

limited impacts from other stressors, such as human land use. As lakes lie in the lowest point in 

the landscape, they integrate changes that occur around them and accumulate records of 

change over centuries time scales in their sediments, enabling the ability to measure and 

understand climate change impacts.  

Measuring the impacts of climate change on Adirondack lakes is critical to understanding and 

forecasting future changes in freshwater quality. However, existing monitoring programs are ill-

equipped to quantify and track future climate change impacts. A new survey of current 

ecological conditions is needed that leverages modern tools and technologies applied to a 

statistically robust distribution of Adirondack waterbodies.  

Efficiently and effectively conducting a Survey of Climate and Adirondack Lake Ecosystems 

(SCALE) requires several antecedent steps. First, sampling a broad representative suite of lakes 

and avoiding biased sampling requires understanding the distribution of lakes across the 

Adirondacks. In turn, this necessitates creating a comprehensive compilation of historical data 

sets and complementing this compilation with remote sensing and hydrodynamic modeling to 

understand lake dynamics in areas with limited or no historical sampling. Second, there are 

several tools and technologies that provide tremendous capability to collect large amounts of 

data with single samples. However, these tools and technologies need some method 

development to ensure quality data are produced applicable to biota and water chemistry in the 

region.   

Through this SCALE Pilot effort, researchers and field crews from the Ausable Freshwater Center,  

City University of New York, Cornell University, Rensselaer Polytechnic Institute, and Syracuse 

University collaborated to (1) conduct hydrodynamic modeling, remote sensing, and data 

mining to identify and select lakes for SCALE field operations, and (2) develop and refine 

methods, including field sampling plans, for carbon characterization, eDNA, and stable isotope 

analyses to ensure quality data are collected. This SCALE Pilot report summarizes each of these 

component efforts. In sum, these efforts have formed the foundation for a successful SCALE 

field program that is slated to begin in summer, 2025.   
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Hydrodynamic Modeling  
Overview and motivation  

We completed hydrodynamic modeling of hundreds of Adirondack lakes to assess trends 

in modeled lake thermal attributes, including lake summer surface water temperature, summer 

bottom water temperature, and stratification onset, duration, strength, and breakdown. This 

also includes assessment of how these thermal attributes vary with factors such as lake surface 

area, depth, and clarity. We completed this work because these physical characteristics regulate 

many important ecosystem properties in lakes, such as phytoplankton growth, dissolved oxygen 

availability, carbon cycling attributes, and phosphorus release from sediments that are SCALE 

priority topics. However, long-term data on temperatures at multiple depths in Adirondack lakes 

are limited. Without such data it is difficult to assess how the changing climate has, and will, 

impact lake warming and the resulting ecological effects. Through this effort, we used 

hydrodynamic modeling to complement and extend long-term data sets to understand how lake 

temperatures have likely changed in unmonitored lakes over time, how lakes are likely to 

respond to future climate change scenarios, and what lakes are most sensitive to warming. 

Understanding the hydrodynamic attributes and trends through time helps identify lakes for the 

survey selection process by ensuring that we sample a lake population that contains a wide 

range of temperature, mixing depths, and mixing durations.   

Model description  

We used Simstrat (Gaudard et al. 2019), a common, well-validated, open-source, 

process-based hydrodynamic model, to simulate daily lake temperature profiles over a 42-year 

period (1980-2022). Initially, we applied the Simstrat model using default parameterization 

options available through the LakeEnsemblR R package (Moore et al. 2021). For each lake that 

we simulated (n = 443, Figure 1) we used lake-specific data for latitude and longitude, surface 

area, maximum and mean depth. Modelled lakes ranged from 5.2 to 46.6 m maximum depth 

(1.1 – 15.4 m mean depth). The surface area of the lakes ranged from 4 to 831 ha, and were at 

elevations between 137 and 877 m.   
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Figure 1: Map of the Adirondack State Park (blueline) with points for the locations for 443 

modelled lakes. Three towns are identified as points of reference in labelled blue open circles.  

We further incorporated a time-varying light attenuation parameter based on either 

observed Secchi depth, or a combination of Secchi depth and remote-sensing based water 

clarity trend. For lakes in the Adirondack Effects Assessment Program (AEAP; n=23), water clarity 

(Secchi depth) was available approximately annually over a period of ~20 years from the 

adklakedata R package (Leach et al. 2018). The AEAP sampled 28 lakes approximately twice a 

summer from 1994 through 2012 for water chemistry and plankton communities. For other 

lakes, we combined Secchi depth observed in the 1980s and applied a linear change based on 

the trend estimated by remote sensing. We next converted Secchi depths to diffuse attenuation 

coefficients (Kd) using the equation Kd = 1.7/Secchi depth. Secchi depth, as well as surface area 

and max/mean depth were obtained from the Adirondack Lake Survey Corporation records 

(Kretzer et al https://doi.org/10.6084/m9.figshare.22312732.v1). We also approximated the 

bathymetry using the rLakeAnalyzer package with the Voldev method parameterized with 

maximum depth, mean depth, and surface area (Winslow et al. 2019). Each lake model was 

driven by hourly meteorology data obtained from ERA5 reanalysis (Hersbach et al. 2020). ERA5 

https://doi.org/10.6084/m9.figshare.22312732.v1
https://doi.org/10.6084/m9.figshare.22312732.v1
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weather data are available at a 0.25° x 0.25° grid, and we used the grid cell whose centroid was 

closest to each modelled lake.  

From each lake model’s output, we used the temperature profile to compute mean 

epilimnetic temperature, mean hypolimnetic temperature, thermocline depth (as the center of 

buoyancy), and the strength of stratification (as Schmidt stability). Each of these values were 

calculated using functions from the rLakeAnalyzer R package.  

Model performance  

Using temperature profile data from AEAP lakes we validated the method of using 

primarily default parameters by comparing observed temperatures against modelled 

temperatures. We did this by calculating the root mean square error (RMSE). We were able to 

simulate temperature profiles for 23 of the 28 AEAP lakes, because we restricted modelling to 

lakes that were at least 5 m deep. Ten of the 23 lakes had a RMSE ≤ 2.5 °C which represents a 

reasonable fit to observed data. For comparison, a larger study of 1137 lakes using similar 

methods for the General Lake Model (GLM) resulted in an RMSE of 2.7 across all depths 

(224,812 measurements). Overall RMSE in our simulations ranged from 1.5 to 8.8 for each lake, 

with a larger range in error values in shallower lakes (Figure 2). This shows that the model 

performs well in larger, deeper lakes, but there is greater uncertainty in modeling temperature 

in shallow lakes.  
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Figure 2: Error in modelled temperature for AEAP lakes by mean depth using default 

parameterization of the General Lake Model (GLM), Simstrat, and the mean prediction of both 

models (ensemble_mean).  

Modeling Results  

Our model results show that summer surface water temperatures are significantly 

increasing throughout the park (Figure 3). A mixed effects model with a fixed effect of year and 

random effect of lake showed that on average summer epilimnetic temperatures increased by 

0.04 °C per year. In many deeper lakes, particularly those greater than eight meters, 

hypolimnetic water is getting colder (Figure 4).  Changing water clarity also had an apparent 

effect on epilimnetic temperature and thermocline depth measured as center of buoyancy 

(Figure 5). Reduced water clarity resulted in warmer surface water, and shallower thermoclines. 

We did not find an impact of water clarity trend on Schmidt stability.   
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Figure 3: Mean summer epilimnetic water temperature across 443 Adirondack lakes.    
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Figure 4: Significant trends in summer hypolimnetic water temperature by lake maximum depth 

and surface area.  

  

Figure 5: Relationship between the trend in water clarity and modeled change in epilimnetic 

temperature, Schmidt stability, and center of buoyancy. Black points represent significant trends 

in epilimnetic temperature, Schmidt stability, or center of buoyancy, while grey points indicate no 

significant trend.  
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Next steps  

Lake temperature modeling will provide context to the survey results we find and 

complement the manually collected data from the survey to better understand the factors 

shaping the physical, chemical, and biological attributes of Adirondack Lakes. We anticipate 

updating the models when new calibration and validation data are obtained (i.e. following the 

first year of high intensity sampling) to improve modeling accuracy and extend survey results to 

other unsampled lakes across the Adirondacks. We plan to write up the results of our modeling 

and submit them to a peer-review journal.   

Data availability  

All data used in hydrodynamic modeling is from publicly available sources. Code and data used 

to generate the hydrodynamic modeling simulations are available on GitHub at: 

https://github.com/ADK-SCALE/lake_hydrodynamics.    

    

Remote Sensing  
Overview and motivation  

We used satellite remote sensing data to analyze and understand changes that have 

occurred in Adirondack lakes over the past four decades, particularly for lakes where monitoring 

data does not exist. The remote sensing data comprises spectral responses from the Earth's 

surface and the atmosphere, captured across various spectral bands that differ in radiometric, 

spatial, temporal, and spectral resolutions. The primary use of these datasets has been to 

predict lake surface temperature and lake chlorophyll concentrations. Lake surface temperature 

is a primary regulator of many ecological attributes, and chlorophyll concentrations are an often 

managed-for water quality criterion. High chlorophyll can also be related to the presence of 

harmful algal blooms. Understanding seasonal, spatial, and long-term patterns in lake 

temperature and chlorophyll across the park informs SCALE lake selection for field work and 

helps generalize findings from field work to the broader region, and ultimately across all of New 

York State.   

Lake temperature overview   

The main purpose of conducting remote sensing research on Adirondack lakes 

temperature is to assess warming rates in small lakes, many of which are undergoing browning. 

Lake browning refers to the process where lakes and other freshwater bodies become 

progressively darker in color over time. This phenomenon is mainly due to an increase in 

dissolved organic matter (DOM), especially dissolved organic carbon (DOC), often originating 

https://github.com/ADK-SCALE/lake_hydrodynamics
https://github.com/ADK-SCALE/lake_hydrodynamics
https://github.com/ADK-SCALE/lake_hydrodynamics
https://github.com/ADK-SCALE/lake_hydrodynamics
https://github.com/ADK-SCALE/lake_hydrodynamics
https://github.com/ADK-SCALE/lake_hydrodynamics
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from soils, wetlands, and decaying vegetation in surrounding catchments. Browning affects lake 

heat budgets and complicates the prediction of warming rates based on air temperature trends. 

The second purpose of this work was to evaluate seasonal heterogeneity in lake warming rates, 

which is poorly understood but has major biological and ecological implications.   

Here, we investigate the capabilities and applications of multiple satellite platforms in 

understanding surface water temperature changes across 135 small lakes in the Adirondacks. By 

integrating these satellite observations with existing field data, we examined surface water 

temperature variability during ice-free seasons since 1984. Satellite-derived water surface 

temperature estimates were evaluated and validated by comparing them with near-surface 

water temperature measurements at selected lakes across the Adirondack Park. In addition, we 

assessed monthly temperature changes to identify trends and seasonal variations.   

  Data from the Landsat series of satellites, managed by the United States Geological 

Survey (USGS), and MODIS (Moderate Resolution Imaging Spectroradiometer) observations 

from NASA represent a comprehensive temporal record with extensive spatial coverage, vital for 

studying all lakes within the Adirondack region. Sentinel-2 data, provided by the European Space 

Agency (ESA), complements this with its high spatial resolution imagery. Landsat and  

Sentinel satellites offer a revisit time of 12 to 16 days, with spatial resolutions of 30 meters and 

20 meters, respectively. MODIS provides coarser resolution imagery (1 kilometer) but has the 

advantage of daily observation frequency, allowing for more frequent monitoring. Analysis of 

these satellite data is critical to understand wide-spread environmental changes occurring 

across Adirondack lakes.   

Lake temperature algorithm development overview  

We employed multi-platform imagery with different spatiotemporal coverage to analyze 

land and lake surface parameters. We performed the analyses at the individual lake level as well 

as across the entire Adirondack Park region (including both lake and water areas). Although 

more advanced satellites are in orbit, the Landsat series and the MODIS satellite have the 

advantage of a multi-decadal record which partly coincides with the time-period of the field 

data.  

MODIS onboard AQUA satellite provides regional scale, high temporal observations from 

2002-present at 1 km spatial resolution (Wan, Hook and Hulley 2015). AQUA, deployed in May 

of 2002, overpasses a single tile of the MODIS sinusoidal tile grid at the equator twice daily at 

1:30 AM and PM solar time. We extracted cloud-free MODIS daytime surface temperature 

within the boundary of the Adirondack Park. While nighttime temperatures were determined to 

be more reliable for climate studies (Zhang et al. 2018), we used daytime temperatures to better 

correspond with Landsat observations and field measurements. This choice may introduce 

higher uncertainty in trend detection compared to nighttime LST, which is generally considered 
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more reliable for climate studies, but ensures stronger consistency across datasets and 

facilitates direct validation of surface temperature observations. Cloud-free values from the 

MYD11A1 daily product (Wan, Hook and Hulley 2015) were used to eliminate anomalous results 

likely caused by clouds or atmospheric disturbances.  

For each lake we extracted Landsat 5 (1984-2011) and Landsat 7 (1999-2024) data, 

taking only images with less than 15% of clouds, and then passing them through an additional 

cloud filter to remove all cloudy or shadowed pixels from the lake area. We used the USGS 

Collection 2, Level 2 Tier 1 Land Surface temperature product, as it is consistent over the 

Landsat series. We extracted satellite temperature estimates via the Google Earth Engine 

Python API, which maintains an extensive archive of Landsat data spanning over four decades. 

Our analysis leveraged Landsat surface temperature data derived from 30 m resolution 

products, targeting the deepest part of each lake with a 3x3 pixel area; a standard method in 

such studies (Ritchie, Cooper and Yongqing 1987; Dyba, et al. 2022). This technique helps reduce 

resampling errors and uncertainties, especially in areas with complex terrain. All nine 

temperature readings after excluding ice, cloudy, and shadow pixels from both Landsat 5 and 7 

were averaged along with their timestamp information for each lake. We used the mean of the 

nine pixels for each lake, after testing confirmed negligible differences between mean and 

median values.  

  

Lake temperature field data   

We identified 135 lakes (Figure 6) to use for validation and calibration of satellite 

temperatures based on the availability of data collected through the Citizens Statewide Lake 

Assessment Program (CSLAP) (https://dec.ny.gov/environmental-protection/water/water-

quality/sampling-activities) and the Adirondack Effects Assessment Program (AEAP). 113 lakes 

were selected from the CSLAP program for the study, the surface areas range from 0.1 to 115.6 

km². In addition, 22 lakes from the AEAP over the period 1994-2012 were used. The surface 

areas for these lakes ranged from 0.06 to 0.9 km.   

https://dec.ny.gov/environmental-protection/water/water-quality/sampling-activities
https://dec.ny.gov/environmental-protection/water/water-quality/sampling-activities
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Figure 6. Map showing the boundary of Adirondack Park with the locations of AEAP and CSLAP 

lakes included in this study.  

Satellite lake temperature estimate validation  

One of the primary goals of this study is to validate satellite-derived water temperature 

data against in situ measurements of near-surface water temperature to ensure their accuracy 

for long-term monitoring of temperature trends. We conducted separate analyses for each 

satellite to evaluate the consistency of their performance over time. The time series from 

satellite data were compared to corresponding in situ observations to assess their reliability for 

climate studies in aquatic ecosystems. Due to the limited number of same-day measurements 

between Landsat 5 or 7 flyover dates and the existing field data, we allowed for a three-day 

window on either side of the field data date to find satellite matches. When calculating slopes 

for validation, only satellite images matching the specific dates were used, not all images within 

the month.   

We compared satellite temperatures to field measurements in two ways: by comparing 

satellites to each other (harmonized) and by comparing satellite data with field data. First, we 

compared Landsat 5 and 7 to evaluate the continuity of the Landsat Temperature product.  

There was reasonable agreement between measurements of the same lakes by both satellites, 

generally taken within a day or two of each other (Figure 7). To avoid the ice season, we only 

assessed data from March to November, though some measurements from both satellites still 

recorded temperatures below freezing. Measurements were strongly correlated (r = 0.95) with a 

bias of 0.52°C, indicating strong agreement with some discrepancies likely due to differences in 

observation dates.  
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Figure 7. The Bivariate distribution of L5 and L7 lake scenes temperature estimates within 3 days 

of each other.   

We also compared the field measurements of water temperature at depths close to the 

surface from CSLAP and AEAP with satellite-derived water surface temperatures from Landsat 5 

and 7. Both Landsat 5 and 7 generally showed good agreement with the field measurements 

despite uncertainties related to location, date, and depth variations (Figure 8). Landsat 5 had a 

slightly better correlation (r = 0.77) with field measurements compared to Landsat 7 (r = 0.71). 

The RMSEs for Landsat 5 was 1.9°C and 1.7°C for Landsat 7 when compared to field 

measurements. We also observed a higher correlation (r = 0.9) between field and satellite 

temperature estimates when focusing on the 80 Lake Classification Inventory lakes (LCI, NYS 

DEC’s professional lake monitoring program, https://dec.ny.gov/environmental-

protection/water/water-quality/monitoring), with a better RMSE value of 1.1°C. This improved 

correlation may be due to the different methods of field data collection between the citizen 

scientist and professional monitoring lake programs. Our findings suggest that rigorous field 

methods can enhance the accuracy and reliability of satellite-derived temperature estimates. 

The accuracy and reliability of satellite estimates can be enhanced by using advanced 

monitoring protocols such as in-situ probe data collection, which have more refined reporting 

than field thermometers. 
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Figure 8. Scatter plot of lake water temperature from CSLAP and AEAP field measurements at 

depths close to the surface versus satellite-based water surface temperature from Landsat 5 

(left) and Landsat 7 (right).  

Field measurements were point surface temperature measurements while 

corresponding satellite temperatures were spatial averages over a 3x3 pixel area (8100 square 

meters). Additionally, differences between exact surface temperatures (sensed by satellites) and 

field measurements at depths up to 1 meter may contribute to uncertainties. CSLAP lake 

measurements often come from the deepest point, while AEAP samples are taken near lake 

outlets. We estimated lake temperatures from the 3x3 grid of the nine pixels closest to the 

deepest point to avoid land contamination. This may introduce uncertainties for AEAP lakes, but 

our statistical analyses showed minimal spatial variation in these lakes' temperatures.    

Lake temperature trends  

We analyzed the long-term temperature trend for each lake using Landsat 5 and 7 data, 

and field measurements. Trends were calculated separately using linear regression for monthly 

and seasonal data, with particular emphasis on the summer months and the transition period 

from spring to fall. For both the seasonal/monthly and annual analyses, we included all data 

points from March to November to capture the full range of temperature variability during the 

ice-free seasons. A similar methodology was applied to a broader study of the park using MODIS 

data, with the exception that trends were computed individually for each pixel. Trends for each 

month of the year were also determined for all pixels across the park.  

  Monthly temperature trends derived from Landsat 5 and 7 observations across 135 lakes 

in the Adirondack were often variable (Figure 9). December, January, and February were 

omitted due to their higher p-values, suggesting an absence of consistent trends, likely caused 

by limited ice-free observations and potential ice-related distortions in temperature 

measurements. The shoulder months of March and November had more prevalent cloud cover 

resulting in fewer data points available for trend analysis. The Landsat 5 trends, during 1984-
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2012, were generally higher compared to Landsat 7's 1999-2023 period, except for May and 

November.   

  

Figure 9. Distribution of temperature trends from Landsat 5 and 7 observations for each month  

across all lakes. The solid red line represents the average monthly trend for the entire 

Adirondack Park from 2002-2022, derived from MODIS LST estimates.   

Park-wide trends in land surface temperature, derived from MODIS data across both land 

and water areas, showed positive tendencies consistent with those observed in Landsat 7 data 

over a similar time-period. These trends ranged from -1.57°C and 1.20°C for April and November 

and varied between -0.10 to 0.79°C for other months. The comprehensive trends for the park, 

represented by MODIS, were lower than those observed by Landsat, potentially due to the 

differences in spatial resolution, observation frequency, and that MODIS reflects all surfaces 

including top of the canopy temperature (not soil temperature) rather than the direct water 

surface temperatures measured by Landsat.  

Data from all three satellites (Landsat 5, Landsat 7, and MODIS) showed faster warming 

in May and October compared to the core summer months, consistent with research suggesting 

a lengthening of the warm season in lakes globally (Woolway 2023). This trend may indicate an 

extension of the warm season, with earlier ice melt and the onset of lake stratification in May. 

The significant warming observed in October suggests that stratification may persist later into 

the season as well, reinforcing the idea of a prolonged warm period.   

  We assessed temperature trends of an extended summer (May – Oct), core summer  

(June – Aug), and annual (Mar – Nov) periods for 30 selected lakes with more than 2 km2 area 

(Figure 10). Results based on Landsat 5 showed high and consistently warming trends for all 

periods. However, annual trends from Landsat 7 alone indicate both cooling and warming. Using 

data from both satellites, we found a warming trend for all seasons. It's important to consider 

potential biases arising from the differences between Landsat 5 and  7 including variations in 
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sensor configurations, spatial resolution, and radiometric resolutions. These factors may 

account for the distinct trend values observed from the two sensors.

 
Figure 10. The slope of a linear regression of water surface temperature variability over specific 

seasons during the available time. Top panel) Landsat 5 only. Middle panel) Landsat 7 only. 

Bottom panel) Combined Landsat 5 and  7 to create an overall trend for the past 40 years. 30 

lakes with an area of more than 2 km2 are selected. Lakes are in order from smallest to largest 

(left to right).  

We further assessed the overall temperature trend for the ice-free season, typically the 

period from May 1st to November 30th. Based on combined Landsat 5 and 7 data from 1984 – 

2023 we found an average increase of 1.11 °C per decade across the 135 study lakes (Figure 11). 

Our analysis included outliers, such as temperatures below zero degrees Celsius, that were likely 

because of unflagged ice pixels.  
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Figure 11. The Boxplot of lake water surface temperature of the selected 135 lakes for May to 

November from 1984 to 2023 using Landsat 5 and 7 and the overall trend line.  

Most lakes had trends around 1 degree per decade, although some had negative trends. 

The park-wide trend, as indicated by MODIS data, showed an overall increase of less than 1 

degree Celsius per decade. Notably, the southern part of the park demonstrated slightly higher 

warming trends compared to other regions (Figure 12). We also analyzed air temperature 

variations and trends using data from the Saratoga Lake station, provided by NOAA's National 

Centers for Environmental Information (National Centers for Environmental Information n.d.). 

The results showed that regional air temperatures increased by 0.44°C per decade. Interestingly, 

this suggests that lakes in the area are warming even faster than the surrounding air. The results 

of this work are under review for a journal publication (Azarderakhsh et al., Under Review).  
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Figure 12. The May-October trend of Landsat 7 data overlaid on MODIS LST trend for the entire 

Adirondack Park Boundary and selected lakes.   

Lake chlorophyll a concentrations overview  

Chlorophyll a (chl-a) is an often-used proxy to characterize the productivity or algal 

biomass of a lake or other waterbody. There are existing empirical models to estimate chl-a 

based on satellite spectral bands. However, a key limitation of existing empirical models for chl-a 

retrieval is their lack of transferability across regions. Current empirical models are mainly 

developed for water bodies with high chl-a concentrations, while majority of the lakes in the 

Adirondacks have very low chl-a and appear very dark in optical satellite surface reflectance. As 

demonstrated by Boucher et al. (2019), empirical models developed for specific study areas 

often fail to perform effectively in other regions due to variations in optical properties and 

environmental conditions. This highlights the need for more robust and adaptable approaches, 

such as machine learning models, which can capture the complex dynamics of water quality 

parameters by incorporating a wider range of remote sensing bands and characteristics.   

Machine learning models, primarily random forest regression, have shown promise in 

outperforming traditional band-ratio and spectral shape methods, offering greater flexibility and 

accuracy in chl-a estimation. While previous studies have made significant strides in remote 
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sensing of harmful algal blooms (HABs), several critical gaps remain. First, the focus on large 

lakes (>10 km²) and coarse-resolution imagery (e.g., Sentinel 3 at 300 m) limits the applicability 

of these methods to smaller water bodies, which constitute most of the lakes in the  

Adirondacks (Schröder et al., 2024). Second, existing approaches often rely on HAB-specific 

indicators like phycocyanin, which, while useful for identifying blooms, do not provide a 

comprehensive understanding of chl-a dynamics across the entire bloom season, including its 

development, peak, and decline.  

Third, many studies lack the integration of multi-sensor data (e.g., combining Landsat and 

Sentinel 2), which could enhance temporal resolution and improve monitoring capabilities 

(Pahlevan et al., 2019). Additionally, the application of advanced atmospheric correction 

techniques to improve the accuracy of chl-a retrievals in small lakes remains underexplored.  

  We began to address these gaps by using Landsat 8 and 9, as well as Sentinel-2 fine-scale 

imagery, combined with non-optically active predictor variables, to create a statewide model of 

chl-a in New York’s inland lakes. We then applied a robust atmospheric correction over aquatic 

surfaces on the raw satellite imagery above as the existing surface reflectance product, Land 

Surface Reflectance Code (LaSRC), available on USGS platform, are developed for land. By 

focusing on all lakes across the state, rather than just those in the Adirondacks, we were able to 

increase the amount of training data and thus develop a more robust algorithm that could later 

be applied to remote sensing observations in the Adirondack region. A constellation of satellites 

further improves the temporal resolution of our overall dataset. By using Landsat 8 and 9 and 

Sentinel-2 (30 m and 10 m, respectively), we could include lakes as small as 0.04 km² and 

increase the frequency of observations. Our primary goal was to explore machine learning 

methods suitable for estimating chl-a concentrations in Adirondack lakes.   

Lake chlorophyll a field data  

We used the LAGOS-NE dataset to select lakes in New York larger than 0.04 km2  

(Soranno, Bacon et al. 2017). Above 0.04 km2, lakes will contain enough pixels (>45) from the 

Landsat 8 & 9 and Sentinel-2 satellites to execute algal bloom analysis. We compiled data from 

lakes in New York with in-situ chl-a data from open-source data repositories including the 

Citizens Statewide Lake Assessment Program (CSLAP), United States Geological Survey (USGS, 

2016), observatory buoys in Lake Chautauqua (Table 1). Chl-a data was joined to the filtered 

lakes greater than 0.04 km2 resulting in 347 unique sites on which to train the model (Figure 

13).  

  

Table 1. In situ data sources and their respective start/end dates, coverage, and citations.  
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Data Source  Date  Number of 

sites/lakes  

Citation  

NYSDEC 

monitoring 

programs 

2011  

-  

2022  

687 lakes  DOW, Bureau of Water Assessment and Management. URL accessed 

2023: 

https://dec.ny.gov/environmentalhttps://dec.ny.gov/environmental-

protection/water/water-quality/monitoringprotection/water/water-

quality/monitoring   

USGS National  

Water Quality  

Laboratory  

2018  

-  

2021  

338 sample  

sites  

USGS, 2016. URL accessed 2023: 

https://www.usgs.gov/labs/national-water-

qualityhttps://www.usgs.gov/labs/national-water-quality-

laboratorylaboratory   

  

  

Figure 13. The New York lakes study region, depicting lakes with in-situ Chl-a data (pink, n = 349) 

and unmonitored lakes (black, n = 4461).  

https://dec.ny.gov/environmental-protection/water/water-quality/monitoring
https://dec.ny.gov/environmental-protection/water/water-quality/monitoring
https://dec.ny.gov/environmental-protection/water/water-quality/monitoring
https://dec.ny.gov/environmental-protection/water/water-quality/monitoring
https://dec.ny.gov/environmental-protection/water/water-quality/monitoring
https://dec.ny.gov/environmental-protection/water/water-quality/monitoring
https://dec.ny.gov/environmental-protection/water/water-quality/monitoring
https://dec.ny.gov/environmental-protection/water/water-quality/monitoring
https://www.usgs.gov/labs/national-water-quality-laboratory
https://www.usgs.gov/labs/national-water-quality-laboratory
https://www.usgs.gov/labs/national-water-quality-laboratory
https://www.usgs.gov/labs/national-water-quality-laboratory
https://www.usgs.gov/labs/national-water-quality-laboratory
https://www.usgs.gov/labs/national-water-quality-laboratory
https://www.usgs.gov/labs/national-water-quality-laboratory
https://www.usgs.gov/labs/national-water-quality-laboratory
https://www.usgs.gov/labs/national-water-quality-laboratory
https://www.usgs.gov/labs/national-water-quality-laboratory
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Satellite data processing for lake chlorophyll  

The Landsat 8 & 9 Operational Land Imager (OLI) and Sentinel-2 Multispectral  

Instrument (MSI) imagery are accessible via Google Earth Engine image collections. The Landsat 

OLI satellites have a revisit period of 16 days and collect data on 8 spectral bands at 30 m spatial 

resolution, and we used the coastal aerosols, visible light, and near infrared (NIR) bands (1-5). 

We filtered the Landsat OLI raw image collections to summer months (May 1 - September 30) 

from 2013 – 2022 and included Landsat 9 imagery beginning in 2021. Sentinel-2 MSI has higher 

temporal, spatial, and spectral resolutions of 5 days, 10 m, and 13 spectral bands, respectively. 

Of the 13 bands, we used the first nine ranging from coastal aerosols to NIR. We compiled 

Sentinel-2 raw imageries for the summer months from 2019 – 2022 corresponding with data 

availability from the s2cloudless imagery in North America.   

Due to inland water bodies’ optically complex and dark features, utilizing a water-based 

atmospheric correction provides more accurate chl-a reflectance values than imagery corrected 

with standard land-based corrections. All three image collections were pre-processed with the 

Modified Atmospheric correction for INland waters (MAIN) (Page, Olmanson and Mishra 2019). 

This algorithm accounts for the complexity of small inland waters with high turbidity, chl-a, or 

other colored dissolved organic matter (CDOM).  

We calculated median band values from buffered sample location points using zonal 

statistics and a 60 m buffer. Band statistics were matched with chl-a samples by lake name and 

sample date, and we allowed for a capture date matchup of ± 7 days to increase the size of our 

training dataset.  

Machine Learning Modeling   

We implemented nonlinear machine learning models that ranked highly including Extra  

Trees Regression (ETR), Support Vector Regression (SVR), Random Forest Regression (RFR), and 

Gradient Boosted Regression (GBR) to predict chl-a concentration over the lakes with existing 

training data. For all model iterations, we split the data for training and testing, with 80% of the 

data being randomly selected for training and the remaining 20% used for testing. For RFR, GBR, 

ETR, and SVR models, we used a 500-iteration random search to optimize the results.   

We executed additional model optimization testing various combinations of input 

variables and subsetted chl-a. Input variables for each model included all Landsat 8 & 9 (bands 

1-5), Sentinel 2 (bands 1-8a), and additional water characteristics variables such as percent of 

developed area and lake size. We used the National Land Cover Database (NLCD) 2019 to derive 

the percentage of inter-watershed agricultural and developed land (Dewitz, 2021). Furthermore, 

we ran each model with select variables (e.g. only Landsat bands, only Sentinel 2 and 

morphology, Landsat and Sentinel 2, etc.). Finally, we split the dataset into low and high 

concentrations, analyzing the performance of a low chl-a model versus high chl-a model (low 
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chl-a < 15 µg/l, high chl-a > 15 µg/l). Performance was assessed using coefficient of 

determination (R2), root mean squared error (RMSE) and mean absolute error (MAE) to assess 

model strengths and weaknesses compared to statewide ground-based measurements.   

Results – Lake chlorophyll  

Model results indicated that ETR, RFR, and GBR performed similarly well, with R2 > 0.60  

(Table 2). Overall, we found that ETR, RFR, and GBR performed similarly, and they performed 

consistently better than the SVR model with R2 values of 0.72, 0.68, 0.51, and 0.18, respectively. 

Additional testing of the ETR model indicated that the incorporation of non-optical features 

substantially boosted performance (R2 0.48 to 0.72) with the best output including all tested 

variables.   

Table 2. Model iteration results with satellite combinations and features; Km2 = lake surface 

area, National Land Cover Database (NLCD)  = percent of interwatershed agricultural and 

developed land.   

Trial  R2  RMSE  MAE  

ETR L8/9 + S2  0.48  11.14  6.04  

ETR L8/9 + S2 + Km2  0.60  9.76  5.23  

ETR L8/9 + S2 + NLCD  0.71  8.33  4.10  

ETR L8/9 + Km2 + NLCD  0.57  9.95  4.89  

ETR S2 + Km2 + NLCD  0.71  8.49  4.10  

ETR All   0.72  8.19  3.97  

RFR All  0.67  8.93  4.82  

GBR All  0.51  10.80  6.16  
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We implemented a permutation importance analysis to determine which of the input 

variables are most influential in the ETR model’s decision making (Figure 14). The results of this 

analysis indicate that the non-optically active input variables, morphology and percent 

developed land, hold the most weight in the model. The spectral bands with the most influence 

are the green (560 nm) band, red (665 nm) band, and NIR 703 nm. Variables noted to have a 

strong influence in previous studies, NIR 864 nm and NIR 740 nm, ranked lower, indicating that 

they are not significant influential indicators of chl-a concentrations. The results of this work are 

planned to be published in a journal manuscript (Greene et al., under preparation).  

  

  

Figure 14. Permutation importance analysis plot for the best performing ETR model with five 

spectral bands from Landsat 8 & 9, Sentinel 2, morphology, and NLCD (agriculture and 

developed land) variables.  

  

Next steps  

This pilot study established a foundation for more extensive future study. The findings 

from this research demonstrate the effectiveness of satellite data for long-term monitoring of 

lake temperature and chlorophyll-a dynamics and inform broader ecological and climate studies 

in the region.  

There are several next steps for remote sensing of lake temperatures. First, to 

understand temperature trends across the Adirondack region it is important to expand the 

scope of study. Building on the pilot analysis of 135 lakes, it will be important to incorporate the 

more than 1,200 additional lakes in the Adirondacks that currently lack consistent field 
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measurements. Since it is not practical to collect field data for every waterbody, the next step is 

to develop and refine models that can accurately extrapolate temperature conditions across this 

broader set of lakes using remote sensing observations. Additionally, it is important to expand 

the scope of this work beyond average surface temperature trends, to understand within-lake 

temperature gradients and how they vary spatially. Understanding these finer-scale differences 

can reveal important ecological patterns and identify areas of rapid change.  

New data sources will improve remote sensing algorithms. First, data from Landsat 8 and 

9, as well as other emerging sensors with higher temporal and spatial resolutions, can be used 

to obtain more remote sensing imagery. This will expand capacity to track rapid changes and fill 

any observation gaps in the existing Landsat record. Next, enhancing the validation of satellite 

products with new ground observations during the SCALE field sampling effort will improve 

algorithms. Deployment of infrared imaging technology to capture near-surface water 

temperature measurements will improve temperature algorithms and further quantify the 

accuracy and reliability of satellite-derived estimates. It will also be important to incorporate 

remote sensing techniques to analyze the timing of ice-on and ice-off events, as well as explore 

how changing freeze-thaw cycles influence overall lake stratification and warming rates. This will 

provide insights into broader ecological shifts tied to climate change. 

There are several next steps for remote sensing of lake chlorophyll concentrations. First, 

a comprehensive model has yet to be established. Building on our initial statewide modeling, 

SCALE field work can help provide targeted validation efforts specifically for Adirondack lakes. 

This will help refine our model parameters to ensure accuracy in optically complex water bodies 

typical of the region. Once validated, the best-performing model will be run for all lakes in the 

Adirondacks. This effort will provide a comprehensive snapshot of Chl-a concentrations across 

the region, laying the groundwork for long-term monitoring and trend analysis.  

Once a successful model is well validated it is possible to understand how chl-a 

concentrations have changed over time. This involves examining historical satellite data to 

detect potential trends—such as increasing or decreasing chl-a—over the period of satellite 

records.  Additionally, once chlorophyll estimates are available it may be possible to evaluate 

environmental and anthropogenic variables—such as land use, watershed characteristics, and 

climate drivers—to identify factors that may contribute to elevated chl-a levels. Next, remote 

sensing can be used to assess spatial variability in chl-a estimates across larger Adirondack lakes 

by mapping and analyzing pixel-by-pixel results. This qualitative evaluation will help us 

understand within-lake heterogeneity, identify potential hot spots of higher Chl-a, and 

determine how effectively our model captures these variations.  

Another key next step to increase accessibility and transparency of the SCALE project 

would be to create an interactive web map that visualizes lake temperature trends, lake 

chlorophyll concentrations, and other key findings. Users will be able to explore individual lakes, 
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view time-series data, and compare trends across the Adirondack region. Users will be able to 

visualize spatiotemporal patterns, query individual lakes, and download relevant data.  

Data availability  

Data used for remote sensing research includes satellite products and in situ data. Both satellite 

data and the in-situ data used in this study are  publicly available. Data outputs from this study 

will be publicly available following review for publication (Azarderakhsh et al., Under Review), 

(Greene et al., under preparation). 

  

Data mining  
Overview and motivation  

We conducted a thorough examination of historical data to understand the variation in 

lake water quality attributes across Adirondack lakes. This work was undertaken as a key step in 

the lake selection process for SCALE. Because only a small subset of Adirondack lakes can be 

sampled in a survey it is critical that we first understand patterns in water quality attributes so 

that survey teams avoid potential bias during field data collections. The data mining process is a 

critical step in the lake selection process for SCALE field operations.  

Data mining process  

The data mining work proceeded in several stages. First, we obtained data on the surface 

area, location, and total number of lakes using the (U.S. Geological Survey n.d.; Viger et al. 

2016). The NHD provides information on rivers, streams, lakes, ponds, and more throughout the 

United States. In that dataset there are over 160,000 waterbodies in New York or adjacent 

watersheds draining into New York. Within the Adirondack State Park there are 11,200 lakes and 

ponds of varying shapes and sizes (Figure 15). We next accessed and compiled data from 

historical datasets. Lakes in the Adirondack State Park have been the subject of numerous 

studies over the past 45 years.   
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Figure 15: A map of lakes and ponds in the Adirondack State Park based on the National 

Hydrography Dataset.  

Historical data review  

  The wealth of historical data available for Adirondack lakes provides a valuable baseline 

for comparison to present-day values and insight into the distribution of water quality variables 

throughout the Park. We identified nine large scale surveys of lakes and ponds in the park 

covering different periods of time (Table 3). Each survey has good spatial coverage of the park 

(Figure 16), except for the Adirondack Effects Assessment Program (AEAP) which focused on the 

Southwest side of the Park thought to be most heavily impacted by acid rain.   

Table 3: Number of lakes sampled by different programs in the Adirondack State Park  
Sampling program  Number of lakes sampled  Years  
Adirondack Lake Survey (ALS)  1469  1984-1987  
Adirondack Effects Assessment Program 

(AEAP)  
28  1994-2012  

EPA Temporally Integrated Monitoring of 

Ecosystems (TIME)  
41  1991-2010  

NY DEC Citizens Statewide Lake Assessment 

Program (CSLAP)  
51  1986-2012  

Eastern Lake Survey (ELS)  173  1984-1986  
EPA Environmental Monitoring and 

Assessment Program (EMAP)  
70  1991-1994  

NY DEC Lake Classification Inventory (LCI)  86  1981-2010  
Adirondack Long Term Monitoring (ALTM)  54  1992-2012  
Adirondack Lake Assessment Program (ALAP)  228  1997-2024  
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Figure 16: Lake locations within the Adirondack State Park sampled by various monitoring 

programs as well as those sampled in the SCALE Pilot study.  

  In total we found 1,721 lakes and ponds that have been previously sampled in the  

Adirondack State Park. However, due to idiosyncrasies in naming conventions this number 

becomes 1,598 unique waterbodies in the NHD. For example, several larger lakes have unique 

identifiers from the 1980s survey for different subbasins.   

  Much of the available data from the Adirondack sampling programs were compiled as 

part of LAGOS-NE-LIMNO (Soranno et al. 2015; Soranno et al. 2017). Other data were available 

from the Adirondack Lake Survey Company (Kretzer et al 

https://doi.org/10.6084/m9.figshare.22312732.v1). Data from ALTM and the 1980s ALS survey 

were also available from EDI repositories (Roy and Dukett, 2017a; Roy and Dukett, 2017b). We 

obtained additional information from reports published by the Adirondack Watershed Institute 

for the Adirondack Lake Assessment Program (Laxson et al. 2018). All the data used in our 

analyses are already publicly available, so no new data release is required to make the data 

public.   

Clustering   

  The 1980s Adirondack Lake Survey showed that lakes and ponds in the Adirondacks 

come in many shapes and sizes and can have a large range in water quality. One of our primary 

goals was to discover if lakes could be grouped together based on their water quality, 

watershed, and morphometric characteristics. This step was undertaken so that we could later 

ensure that all types (clusters) of lakes were sampled during SCALE field visits. To begin, we 

conducted a Principal Components Analysis (PCA) using data from the 1980s lake survey. 

https://doi.org/10.6084/m9.figshare.22312732.v1
https://doi.org/10.6084/m9.figshare.22312732.v1
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Variables included in the PCA covered water chemistry, lake shape (e.g., depth, area, volume), 

and watershed characteristics (land cover). All variables were centered and scaled to units of 

standard deviation prior to analysis.  

The first two principal components explained about 25% of the total variation across the 

lakes (14.5 and 11.7% respectively; Figure 17). Dissolved organic carbon (DOC), color, and total 

phosphorus (TP) all correlated with wetland area in the watershed and wetland area adjacent to 

the lake, as well as with watershed slope. Larger, deeper lakes were inversely correlated with 

DOC and TP. Some lakes also had very high conductivity, acid neutralizing capacity (ANC), 

dissolved inorganic carbon (DIC), and calcium. These higher conductivity lakes were largely 

independent of the variation in DOC and TP.   

  

Figure 17: PCA biplot of lake characteristics in the Adirondacks. Colored circles and point shapes 

indicate clusters identified through k-means. Large points show cluster centroids.  
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  We next assessed the clustering of lake properties using k-means (Figure 17). Using the 

elbow method, identifying the point where the slope changes in a scree plot indicated that ten 

was the optimal number of clusters. The number of lakes in each cluster ranged from 15 – 250 

(Figure 18). Visual inspection of the spatial distribution of clusters indicated that the lakes in 

each cluster were well-distributed across the park.     

  

Figure 18: The distribution of lakes in each cluster identified following PCA of lake chemistry, 

morphometry, geography, and watershed characteristics throughout the Adirondack State Park.  

  The spatial clustering results raised the question of whether there are spatial 

relationships among lakes in terms of their water chemistry. We sought to determine if lakes 

that are closer together geographically are more similar in water chemistry, or if similarity in 

lake shape or watershed characteristics could explain similarities in chemistry. For each pair of 

lakes, we computed the environmental, geographic, morphometric, and watershed distance.    

Data mining results  

Our goal was to select lakes at three levels or categories. The first category of lakes is 

those that will be sampled approximately every three weeks throughout the open water season 

for three years and have sensors installed for high-frequency monitoring. It is anticipated there 

will be 10 lakes in this category. The second category of lakes are those that will be sampled 
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approximately every three weeks throughout the open water season for a single season and 

have sensors installed for high-frequency monitoring, for a total of about 30 lakes over three 

years. In total between categories one and two we anticipate there will be a total of 40 lakes 

that will have seasonally resolved data over the duration of SCALE. The third category of lakes 

are single visit lakes. These lakes will be visited once over the duration of SCALE, with 

approximately 75-100 lakes sampled each year and 250-300 over the three years anticipated for 

the survey. In addition to these three categories of lakes there will be a small number of 

additional lakes added to the survey as resources and collaborations permit. These include lakes 

that are sampled routinely by other organizations where the sampling programs align 

sufficiently with SCALE to permit them being added to SCALE (e.g., Lake George, Mirror Lake, 

Cranberry Lake, and Upper Saranac Lake) with minimal additional resource investments.   

Given the higher investment required for category one and two lake monitoring, we 

sought to prioritize lakes for these categories that had a wealth of existing data available. Many 

lakes in the Park have been studied for more than a decade and building on these datasets could 

be valuable to better understand long-term trends and variability. We also sought to identify 

representative category two and three lakes that were relatively easily accessible, given the 

number of repeated visits that would be required for frequent sampling.   

Selection for category two and three lakes began by creating a list of 78 lakes that have 

been well-studied as part of the AEAP, ALTM, and/or ALAP, and have either long-term biological 

data or relatively distinct characteristics based on clustering and lake types. We also included in 

our list those lakes with some significance to the public, with some preference for lakes that also 

had a history of sampling. There are 15 HUC8 watersheds in the park, and these 78 lakes are 

spread across 13 of them. The two watersheds with no high-intensity lake candidates (Hudson-

Hoosic and Mettawee River) only have a small portion of their area within the park boundary.   

Given the spatial distribution of high intensity sample candidates, we chose to select four 

lakes for the multi-year intensive sampling effort from a regional cluster, and the remaining six 

spread throughout the park (Figure 19). Using this approach, we expect to distinguish the 

responses of different kinds of lakes to similar regional drivers (e.g., weather) as well as spatial 

differences.  The cluster is in the western part of the park and includes: Seventh, Sagamore, 

Limekiln, Big Moose, Queer, Dart, Moss, Rondaxe, Cascade, Windfall, Squash, West, Constable, 

and Lower Sister.   

Many of these lakes were also part of the AEAP program, which means they have a lot of 

biological data associated with them, in addition to the chemical and physical data from the 

ALTM. We selected four lakes from this cluster: Sagamore, Queer, Dart, Squash. These four lakes 

represent different clusters for trends in DOC and Color as well as covering most of the range for 

DOC and TP and have distinct plankton communities. They also range from small to large, and 

remote sensing data are available for all but Squash. The remaining six lakes include Little Echo  
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Pond, Arbutus Lake, G Lake, West Caroga Lake, Garnet Lake, and Upper Ausable Lake. G, West 

Caroga, Little Echo and Arbutus were a part of the ALTM, and Garnet Lake has also been 

sampled as part of ALAP. These lakes range from 0.8 to 133 ha in area with maximum depths 

from 4.6 to >22 m.   

  

Figure 19: Map of lakes where seasonally resolved measurements will occur, with blue for 

multiyear, green for a single year.   

For the single year seasonally sampled lakes (category two) we chose from the well 

studied lakes to represent the distribution of lakes around the park. We first split the list into 

each of the 13 HUC8 watersheds. Watersheds with more well-studied lakes had more lakes 

included in the list of high intensity candidates. Lakes were chosen based on their position in the 

distributions of watershed area, surface area, maximum depth, mean measured total 

phosphorus, and mean measured DOC.     
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Table 4: List of lakes selected for the first year of SCALE sampling (indicated by an “X” in the 

column “yr1”). Here, “grp” indicates the group or category of lake, whether the lake will be 

sampled every year of the survey (grp 1) or one year (grp 2). Grp 3 are those lakes that will be 

monitored for a single year in years two and three. Grp 4 indicates those lakes where external 

monitoring programs we are aware of may enable inclusion of this lake in SCALE with minimal 

additional resource investment. Additional columns indicate the National Hydrography dataset 

permanent identifier (NHDID), latitude (LAT), longitude (LONG), name (PONDNAME), elevation 

(ELEV), watershed area (WAREA), surface area (SAREA), max depth (DEPTH), and 8 digit 

hydrologic unit watershed name (HU8name).    
yr1  grp  NHDID  LAT  LONG  PONDNAME  ELEV 

(m)  
WAREA 

(ha)  
SAREA 

(ha) 
DEPTH 

(m) 
HU8name  

X  1  115353991  44.084  -73.862  UPPER AUSABLE LAKE  607  4119  61.7  14.6  Ausable River  
X  1  131843739  43.826  -74.886  SQUASH POND  648  41  3.3  5.8  Black  
X  1  131844150  43.793  -74.871  DART LAKE  536  10757  51.8  17.7  Black  
X  1  53540671  43.414  -74.633  G LAKE  619  413  32.2  9.8  Mohawk  

X  1  53542311  43.132  -74.491  WEST CAROGA LAKE  443  1413  129.1  22.6  Mohawk  
X  1  132437639  43.814  -74.807  QUEER LAKE  597  155  54.5  21.3  Raquette  
X  1  132437679  43.766  -74.628  SAGAMORE LAKE  580  4946  68  22.9  Raquette  
X  1  129691062  44.309  -74.356  LITTLE ECHO POND  479  7  0.8  4.6  Saranac River  
X  1  89365829  43.519  -74.022  GARNET LAKE  448  2121  133  NA  Upper Hudson  
X  1  89362525  43.988  -74.242  ARBUTUS LAKE  513  365  48.2  7.9  Upper Hudson  
X  2  115353949  44.18  -73.967  HEART LAKE  661  63  10.7  16.8  Ausable River  
X  2  131844009  43.805  -74.831  WINDFALL POND  601  44  2.4  6.1  Black  
X  2  131842438  43.879  -74.769  UPPER SISTER LAKE  588  1409  32  3.7  Black  

X  2  131844637  43.745  -74.782  SIXTH LAKE FULTON 

CHAIN  544  4837  43.6  11.6  Black  

X  2  53542015  43.189  -74.499  OTTER LAKE  503  361  14.8  4  Mohawk  
X  2  150679608  44.157  -74.378  FOLLENSBY POND  471  NA  393  31.1  Raquette  

X  2  47723283  43.371  -74.246  WILLIS LAKE  397  139  14.6  2.7  Sacandaga  
X  2  132876321  44.705  -74.136  MOUNTAIN VIEW LAKE  453  11474  97.1  2.7  Salmon  
X  2  89362297  44.021  -74.22  WOLF LAKE  556  673  56  NA  Upper Hudson  
X  2  89362411  43.994  -73.827  CLEAR POND  583  601  70.4  24.4  Upper Hudson  

   3  131845587  43.69  -75.065  GRASS POND  546  237  5.3  5.2  Black  

   3  131844924  43.794  -75.291  PAYNE LAKE  375  42  7  6.7  Black  

   3  131844064  43.811  -74.883  WEST POND  585  108  10.4  5.2  Black  

   3  131845828  43.6  -74.662  BROOK TROUT LAKE  722  177  28.7  23.2  Black  

   3  131844377  43.781  -74.853  MOSS LAKE  536  1315  45.7  15.2  Black  

   3  131844719  43.756  -74.916  LAKE RONDAXE  524  14283  90.5  10.1  Black  

   3  132876172  44.733  -73.97  UPPER CHATEAUGAY 

LAKE  
399  20856  1038  21.9  ChateaugayEnglish  

   3  132859255  44.24  -74.658  BOOTTREE POND  463  24  6.2  15.2  Grass  

   3  92081293  44.747  -73.824  CHAZY LAKE  470  6896  746.6  21  Lake Champlain  

   3  53542293  43.169  -74.534  WEST LAKE  470  5146  78.2  8.5  Mohawk  
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   3  53542293  43.168  -74.523  CANADA LAKE  472  9040  343  45.7  Mohawk  

   3  133099412  43.961  -75.045  LOON HOLLOW POND  607  60  5.7  11.6  Oswegatchie  

   3  132433418  44.483  -74.74  JOE INDIAN POND  394  5312  138.1  3.4  Raquette  

   3  132437266  43.858  -74.45  BLUE MOUNTAIN LAKE  546  2972  697  30.5  Raquette  

   3  47726211  43.236  -73.989  MINER MILL VLY  477  558  3.3  1.8  Sacandaga  

   3  47724773  43.302  -74.585  JOCKEYBUSH LAKE  599  149  17.3  11.3  Sacandaga  

   3  129691051  44.312  -74.372  EAST COPPERAS POND  479  15  3.6  6.4  Saranac River  

   3  129690808  44.512  -74.125  BIG HOPE POND  522  194  8.9  11.5  Saranac River  

   3  129691004  44.337  -74.372  MIDDLE POND  484  182  24.3  3.3  Saranac River  

   3  135271335  44.432  -74.27  LOWER ST. REGIS LAKE  494  4427  141.5  11.6  St. Regis  

   4  115353807  44.289  -73.982  MIRROR LAKE  566  301  50.5  18.3  Ausable River  

   4  92083789  43.843  -73.432  LAKE GEORGE  66  60347  11536.6  60  Lake Champlain  

   4  133098825  44.165  -74.803  CRANBERRY LAKE  453  37478  2795.9  11.6  Oswegatchie  

   4  150563204  44.324  -74.322  UPPER SARANAC LAKE  482  19580  1912  26  Saranac River  

  

To select potential lakes for inclusion in the single visit survey we began by analyzing 

unique lakes within each watershed. We grouped lakes by cluster, lake type, and watershed.  

Among these groups 108 included a single lake, 58 groups were lake pairs, and 143 groups had 

more than 3 lakes.  From the 58 pairs of lakes, if one was on public land and the other on 

private, we selected the public lake resulting in 23 lakes selected. If both lakes were on public 

land, we randomly selected one, giving an additional 20 lakes. Similarly, for groups with three or 

more lakes we selected any public land lakes from groups where there was only one and 

randomly sampled public lakes when there was more than one. Additionally, we included lakes 

that represented surface area, watershed area, or depth outliers within clusters. Another 68 

lakes were included to represent lakes with either more complex or simple shapes within 

watersheds. For lakes not included in clustering analysis we assessed lakes within watersheds, 

selecting a range of depths, mean measured DOC, mean measured chlorophyll a, and/or mean 

measured total phosphorus. We additionally included 57 other well-studied lakes and 39 lakes 

from the ALTM. Our final list of potential low intensity lakes included 500 lakes (Appendix A).        

For the first year of sampling, we selected 100 potential lakes. Approximately half the 

lakes recommended for the single visit survey list were not included in the clustering analysis, so 

we chose 50 lakes from clusters and 50 from the non-clustered lakes. We randomly sampled 

lakes from each of 5 larger clusters based on the relative number of lakes in each group. From 

the non-clustered lakes, we randomly selected 50.   

Next steps  

The data mining process has been completed with the conclusion of the SCALE pilot 

program. However, the lakes actually sampled during SCALE field operations may not exactly 
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match the list of recommended lakes due to logistical challenges that may arise during field 

work, such as the inability to access selected lakes. The data mining process recommended back 

up/alternative lakes in case some lakes cannot be accessed.   

Data availability  

All data used in the historical data mining and lake selection process were publicly 

available. Code and intermediate data used to generate the lake lists are available on GitHub at:  

https://github.com/ADK-SCALE/lake_selection.    

    

Carbon characterization  
Overview and motivation  

Widespread browning of surface waters in boreal and temperate regions of the Northern 

Hemisphere has been documented through long-term monitoring of color and/or dissolved 

organic carbon (DOC) over recent decades (Monteith et al. 2007; de Wit et al. 2021; Blanchet et 

al. 2022). Lake browning has received growing attention for its effects on ecosystem function, 

but the ways in which it alters carbon quality remain less well defined. Optical properties such 

as UV absorbance and fluorescence are often used to infer Dissolved Organinc Material (DOM ) 

characteristics like molecular weight, aromaticity, and chromophore content, but their variation 

across Adirondack lakes and influence on lake processes are not well understood. Moreover, the 

relationship between these DOM attributes and photochemical reactivity, particularly the 

formation of photooxidants like singlet oxygen (1O2), remains unclear, despite its relevance to 

biogeochemical cycling and contaminant transformation in sunlit surface waters.  

Developing and implementing SCALE to understand lake browning requires improved 

methods for characterizing carbon and assessing how variations in carbon quality influence key 

processes. To address this need, we examined DOM characteristics and 1O2 production in 37 

lakes within the Adirondack Long-Term Monitoring (ALTM) program sampled during three 

periods: October-November 2022, May-June 2023, and September 2023.  

Carbon characterization approaches  

Carbon quality can be inferred from optical properties such as UV-visible absorbance and 

fluorescence. For example, absorbance at specific wavelengths, normalized to DOC 

concentration, yields specific UV absorbance (SUVA) that serves as an indicator of aromatic 

content (Weishaar et al. 2003). Fluorescence measurements typically involve collecting 

excitation-emission matrices (EEMs), which record the intensity of emitted light across a range 

of excitation and emission wavelengths. Such fluorescence matrices can then be analyzed to 

identify fluorescence components indicative of DOM sources and compositional features 

(Fellman, Hood and Spencer 2010).  

https://github.com/ADK-SCALE/lake_hydrodynamics
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In this work, EEMs were measured on water samples from 37 ALTM lakes using a Horiba 

Scientific Aqualog spectrofluorometer.  EEMs were recorded across an excitation wavelength 

range of 240 to 650 nm in 1-nm increments and an emission wavelength range of 248 to 830 nm 

in 2.33-nm increments. Optical indices, such as Napierian absorption coefficients (Cuthbert and 

del Giorgio 1992), SUVA254 (the specific UV absorbance at 254 nm; indicating DOM aromaticity) 

(Weishaar et al. 2003), E2:E3 (the ratio of Napierian absorption coefficients at 250 and 365 nm; 

indicating DOM molecular size) (De Haan and De Boer 1987), fluorescence index (indicating the 

relative abundance of microbially versus terrestrially derived DOM) (McKnight et al. 2001), 

humification index (indicating the degree of humification) (Zsolnay et al. 1999), and freshness 

index (indicating the presence of freshly produced DOM) (Wilson and Xenopoulos 2008), were 

extracted from the absorbance and EEM fluorescence data using MATLAB.  

Concurrently, we characterized the spatiotemporal patterns of apparent quantum yields of 

singlet oxygen (1O2) for whole water samples collected from these lakes. 1O2 is a reactive oxygen 

species ubiquitous in sunlit aquatic environments and plays a central role in the sunlight-driven 

oxidation of DOM, as well as transformation of organic micropollutants (e.g., pesticides) and 

biomolecules (e.g., cyanobacterial metabolites), among other processes (Ossola et al. 2021). 

The 1O2 apparent quantum yield represents the number of moles of 1O2 produced per mole of 

photons absorbed by the chromophoric fraction of DOM and serves as a key input parameter 

for photochemical modeling (Partanen et al. 2021). Importantly, apparent quantum yields 

capture changes in the intrinsic photoreactivity of DOM, which is governed by variations in its 

composition rather than its concentration (i.e., DOC). Measurements of apparent quantum 

yields offer a quantitative basis for predictive modeling of pollutant lifetimes in the sunlit 

euphotic zone of lakes. To this end, we combined the apparent quantum yields of 1O2 with site-

specific solar irradiance modeled by the Simple Model of the Atmospheric Radiative Transfer of 

Sunshine (Gueymard 1995; Gueymard 2001; Gueymard 2019) to estimate depthaveraged 

steady-state concentrations of 1O2 in the euphotic zone for each ALTM lake. Our data will be 

valuable to practitioners interested in estimating the environmental half-lives of 1O2reactive 

pollutants as well as to investigators assessing the natural attenuation capacity of ALTM lakes 

and similar aquatic ecosystems.  

Carbon characterization and photochemistry results  

Characteristics of DOM quality varied across ALTM lakes and seasons, with higher DOC 

concentrations generally associated with more processed, terrestrially sourced DOM of higher 

molecular weight and greater aromaticity (Figure 20). Hydrogeological conditions of lake 

watersheds (e.g., hydrologic connectivity and surficial geology) and seasonal variations in DOM 

quality jointly shaped the spatiotemporal patterns of the apparent quantum yields of 1O2. 

Overall, the apparent quantum yields of 1O2 for headwater and chain drainage lakes were higher 

than for seepage lakes, which is attributable to enhanced 1O2 production by DOM with a greater 

proportion of microbially derived components and smaller molecular sizes in drainage lakes. 
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Furthermore, the apparent quantum yields of 1O2 for thin till drainage lakes were higher than 

for both medium till and thick till drainage lakes, as can be rationalized by the greater 

contribution of upland runoff with shorter transit times (e.g., less DOM processing along the 

terrestrial-aquatic continuum) over deep groundwater inflow into thin till lakes. Within the 

euphotic zone of ALTM lakes, the depth-averaged steady-state concentrations of 1O2 varied from  

3.6×10-16 to 9.3×10-15 M (median 2.0×10-15 M) and fell on the upper end of the range of 

depthaveraged values (e.g., 6×10-17 to 5×10-15 M) predicted for the epilimnia of lakes globally 

(Partanen et al. 2021). While 1O2 concentrations were less sensitive to watershed hydrologic 

connectivity and surficial geology than the apparent quantum yields, they followed a similar 

seasonal trend: May/June > September > October/November. Consistently across seasons, 1O2 

concentrations were highest in lakes undergoing intense browning, intermediate in those 

experiencing moderate browning, and lowest in those exhibiting mild browning (Figure 21). For 

compounds with second-order reaction rate constants with 1O2 on the order of 107 M-1 s-1 (e.g., 

herbicides and cyanopeptides), median half-lives attributable to 1O2 were predicted to range 

from 6 to 23 months in the euphotic zone of lakes with intense browning, 9 to 38 months in 

those with moderate browning, and 13 to 56 months in those with mild browning.  
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Figure 20. Spearman’s correlation between dissolved organic carbon (DOC) and selected DOM 

quality indicators measured in ALTM lakes sampled during the pilot study: (a) E2:E3, which is an 

indicator of DOM molecular size; (b) SUVA254 (specific UV absorbance at 254 nm), which is an 

indicator of DOM aromaticity; (c) freshness index, which is an indicator of the relative 

contribution of recently produced DOM; (d) humification index, which is an indicator of the 

degree of DOM humification. Error bars denote standard deviations from duplicate 

measurements; if not visible, they fall within the markers.  
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Figure 21. Multiple comparison of the estimated depth-averaged steady-state concentrations of 

1O2 in the euphotic zone of ALTM lakes with varying degrees of browning. In the boxplot, each 

box spans the 25th to 75th percentiles, with whiskers extending to 1.5 times the interquartile 

range below the 25th and above the 75th percentiles. The centerline and “+” mark indicate the 

median and mean, respectively. The gray circles represent outliers. The numbers in parentheses 

represent the number of samples in each group. Box colors correspond to their respective 

median values referenced against the color bar. A Kruskal-Wallis test was first performed to 

determine whether statistically significant differences existed among groups. If significant, 

pairwise Mann-Whitney U tests were performed, with significant differences marked by asterisks 

as “*” (p<0.05), “**” (p<0.01), “***” (p<0.001), or “****” (p<0.0001). For the maps, the solid 

yellow line delineates the boundary of Adirondack Park.  

Next steps  

Since DOM is a key regulator of physical, chemical, and biological processes in lakes, it is 

valuable to characterize both its quantity (i.e., DOC) and its quality (e.g., optical properties and 

photoreactivity) as part of SCALE framework. This component of research would expand 

understanding of spatial and temporal patterns of DOM attributes in Adirondack lakes and the 

lake-watershed characteristics that drive this variation, as well as the water quality parameters 

that are related to shifts in DOM quantity and quality. Optical properties of DOM can also inform 

other SCALE components, including the influence of browning on epilimnetic warming, thermal 

stratification, hypolimnetic oxygen depletion and associated biological responses; inlake carbon 

processing; nutrient and metal cycling (e.g., mercury); acid-base chemistry; and the 

interpretation of remotely sensed data. Our 1O2 measurements provide a baseline for assessing 

DOM photoreactivity in the ALTM lakes; however, generalizing 1O2 production in response to 

browning remains challenging given the limited scope of sampling during this pilot phase.  

Measuring 1O2 production within the SCALE framework will increase the spatial coverage and 

temporal resolution of data beyond what we learned from the SCALE pilot study. In addition, 

several other aspects of this work would benefit from SCALE. For example, in situ 

measurements of diffuse attenuation coefficients would improve estimates of light availability in 

the water column, and high-resolution temperature profiling would refine depth-specific 

correction factors for 1O2 production. Together, these efforts will allow for a more complete 
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assessment of the role of 1O2, and potentially other photooxidants (e.g., hydroxyl radicals), in 

carbon cycling and contaminant attenuation in Adirondack lakes.  

Data availability  

Data for this study are summarized in a manuscript which has been submitted for review and 

publication. Oz, B., P. K. Snyder, C. T. Driscoll, T. Zeng in review. Browning and Singlet Oxygen  

Production in Adirondack Long-Term Monitoring Lakes, Environmental Science and Technology.  

  

The data will be submitted for public access in the U.S. Environmental Protection Agency Water  

Quality Exchange https://www.epa.gov/waterdata/water-quality-data  

    

Environmental DNA  
Overview and motivation  

A key goal of SCALE pilot work was to evaluate whether environmental DNA (eDNA) can 

be used as a robust tool for evaluating the fauna of Adirondack lakes. Specifically, we evaluated 

the potential for eDNA to provide an efficient and sensitive way of profiling the species 

composition of aquatic communities. Previous surveys, including the Adirondack Lake Survey 

(ALS) from 1984-87, were performed using labor-intensive collection methods such as gillnets 

and minnow traps. These conventional approaches require significant time and effort to 

capture, identify, and document the species that are present, and are prone to overlooking rare, 

cryptic, and small-bodied species. In contrast, eDNA methods hold promise for detecting and 

identifying species of multiple major taxa from water samples, thereby providing a rapid, 

noninvasive, and comprehensive snapshot of biodiversity. This approach can streamline both 

broad surveys and long-term monitoring, enabling researchers and resource managers to 

efficiently track species distributions, assess ecosystem health, and detect invasive species or 

endangered taxa.   

The SCALE pilot work involved sampling and analyzing eDNA from 12 lakes across the 

Adirondack Park. We filtered water samples from replicate sites in shallow nearshore, deep 

offshore, shallow offshore, and outlet habitats. DNA from fish, insects, and mussels was 

amplified and analyzed, producing a table of unique sequences with their inferred taxonomic 

identities.  Sampling for this pilot study was designed to resolve four major uncertainties about 

achieving adequate field sampling of small temperate lakes, thereby guiding design of field 

sampling protocols for future sampling efforts. These uncertainties were: how much water 

should be collected per sample to ensure strong species representation in every sample; how 

many replicate samples should be collected per major habitat type in a lake; how many discrete 

https://www.epa.gov/waterdata/water-quality-data
https://www.epa.gov/waterdata/water-quality-data
https://www.epa.gov/waterdata/water-quality-data
https://www.epa.gov/waterdata/water-quality-data
https://www.epa.gov/waterdata/water-quality-data
https://www.epa.gov/waterdata/water-quality-data
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habitat types should be sampled to fully represent the fauna of a lake; and whether the month 

of sampling between May and September affects the inferred faunal inventory from a lake.  In 

addition, the laboratory analysis and bioinformatics steps to complete the dataset were 

expected to offer lessons on primer selection, taxa that can be assessed most cost-efficiently, 

and sensitivity to invasive and rare species.  

Sample collection  

Twelve lakes were included in this pilot study, and each was sampled to capture a range 

of habitats and seasonal variations (Figure 22). From each lake, five samples were collected 

from the surface nearshore habitat, five from the offshore habitat within the hypolimnion layer, 

five from the offshore habitat near the surface, and one from the outlet stream flow. For the 

ALTM lakes (n=8), we collected these 16 samples twice per year — once in spring (late May-

June) and once in fall (late August-early October) to test for seasonal differences in species 

presence and detectability.  

 

Figure 22. Lakes and ponds sampled for environmental DNA within the Adirondack Park for this 

pilot study.  
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Two of the ALTM lakes, Dart Lake and Sagamore Lake, were sampled at twice as many 

sites per habitat in the fall to provide stronger inferences about the accumulation of species 

detections with sampling effort. Four additional, non-ALTM lakes (Combs Lake, East Lake, Little 

Moose Lake, Green Lake) were only sampled in the fall. These non-ALTM lakes were chosen to 

represent a wide range of fish and mussel assemblage richness that has been documented by 

Cornell’s Adirondack Fishery Research Program. These lakes offered the best-known faunal 

composition for comparison to eDNA results.  

  

eDNA data generation and reference database  

The Environmental DNA and Genomics Core Facility (EGCF) at Cornell University 

performed phenol-chloroform organic DNA extractions on a total of 376 field eDNA samples 

collected during pilot field collections. Of these 376 samples, 361 were lake samples and 15 

were field blanks collected to estimate levels of contamination during the sampling process. In 

addition to lake samples and field blanks, 18 extraction blanks were generated in the lab to 

monitor contamination during the extraction process. Additionally, two PCR blanks were 

included to confirm the absence of contamination during amplification. To target the 

amplification of barcodes associated with fish species, the MiFish region was amplified from all 

samples following the protocol by Miya et al. (2015). To target amplification of mussels across all 

lakes, COI primers based on Dokai et al. (2023) were used.   

The focus of the pilot project was fish and mussel eDNA, and all samples were 

sequenced using the NextSeq 500 platform with 2x150bp chemistry. The same eDNA extracts 

can be analyzed for other taxa by sequencing other genes, and we tested two other barcoding 

loci on an exploratory basis to inform future SCALE work. First, we analyzed samples from Moss 

Lake only for insects using COI primers as described by Leese et al. (2021). Given the smaller 

number of samples, insects in Moss Lake were sequenced on the MiSeq platform, also using 

2x150bp chemistry.  Second, we analyzed the full set of 376 samples using a universal set of 18S 

rRNA primers intended to target all metazoan organisms by Hadziavdic et al. (2014). An initial 

screening of the dataset suggested high rates of non-target amplification (i.e., non-metazoans) 

with limited applicability to the goals of this study. This dataset will continue to be analyzed but 

is not being further addressed in this report due to its unexpected complexity.  

The EGCF processed the sequencing data using a pipeline that included Trimmomatic 

(Bolger, Lohse and Usadel 2014) for read trimming, DADA2 for error modelling and amplicon 

sequence variant (ASV) inference (Callahan et al. 2016), and BLAST for taxonomic assignment 

(Camacho et al. 2009). The resulting output was a detailed table of unique sequences (amplicon 

sequence variants, or ASVs) detected in each sample for each barcoding locus.  



49  

  

To convert ASVs into a list of species whose barcodes were detected in each sample, the 

sequences are compared to a reference database that serves as an identification key. We drew 

upon existing reference databases from the National Institute of Health National Center for 

Biotechnology Information (NIH NCBI) for these taxonomic classifications. The nucleotide 

database (GenBank) contains over 250 million sequences across all metazoans and serves as the 

most commonly used and taxonomically comprehensive reference database for environmental 

DNA sequence classification. To ensure the applicability of the GenBank dataset to Adirondack 

ecosystems, the database was screened by the EGCF to ensure that reference sequences were 

available for all fish species known to be present in the region. Although the GenBank database 

is comprehensive for fish species of the Adirondacks, several gaps were identified in regard to 

mussel species native to the region (as highlighted below in “Synthesis and Next Steps”).    

Comparing fish eDNA results with SCALE pilot study catches  

For stable isotope analyses conducted under the SCALE pilot study, a modest number of 

fish were captured from eight of our twelve study lakes (Combs Lake, Dart Lake, East Lake, 

Green Lake, Heart Lake, Moss Lake, Sagamore Lake, and Upper Cascade Lake). All but one 

species captured in each lake for isotopic analyses were also detected using eDNA. The 

exception was the northern redbelly dace (Chrosomus eos) population in Moss Lake. Only two 

northern redbelly dace were captured near the Moss Lake inlet using minnow traps, and 

historical survey data indicate that northern redbelly dace represented ~0.1% of individual 

fishes in Moss Lake and are most abundant at the inlet (~3% of fishes). It is possible that eDNA 

sampling missed this species because it moves into and out of Moss Lake seasonally from the 

inlet stream.  

Comparing fish eDNA results with historical catch data  

Nearly a century of historical fish catch data is available for three of the ALTM lakes in 

this pilot study (Lake Rondaxe, Figure 23, Moss Lake, Figure 24, and Dart Lake, Figure 25, 

Daniels et al. 2011), with 4-5 visits per lake since 1931. For these three lakes, we compared 

species list between historical catches and eDNA results to assess the thoroughness of eDNA-

based fish species inventories. For the other ALTM lakes in this pilot study, we have only a single 

historical time point to compare against (Adirondack Lake Survey in the 1980s), so these three 

lakes represent a rare opportunity to investigate community changes over longer time scales.  

Most eDNA results agreed with knowledge from historical surveys by traditional 

methods.  However, we also inferred three distinct patterns of species changes in the three lakes 

relative to previous records: population resurgences, recent losses, and recent gains. 1) 

Population resurgences were evident in cases where species last recorded in catch data from 

the 1930s were not observed again until our 2023 eDNA analysis (e.g., northern redbelly dace,  

Chrosomus eos and finescale dace, C. neogaeus in Lake Rondaxe). These detections may reflect 
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populations recovering after environmental stressors, such as acidification, or could represent 

rare community members that are not consistently detected by traditional sampling methods. 

2) Species losses were  

represented by species that were historically present in catch data but were not detected in the 

2023 eDNA samples. These were often prey species, such as the common shiner (Luxilus 

cornutus) which was historically common in Lake Rondaxe, Moss Lake, and Dart Lake but was 

not detected in any of the three lakes using eDNA in 2023. If real, the lack of detection in 2023 

may be linked to the introduction of invasive predators (i.e., Micropterus bass species), which 

could have pushed populations too low to be reliably detected by limited eDNA sampling. 3) 

Species gains refer to new species detected in the eDNA dataset that had never been previously 

documented in these lakes. Some of these species may have been present at low abundance 

during previous surveys but can be detected more effectively by sensitive eDNA methods. Other 

apparent species gains may be new migrants or invasive species. A notable example is the 

margined madtom (Noturus insignis), a species not native to the Adirondacks but known to be 

expanding its range into this watershed. N. insignis was detected in multiple samples from both 

Lake Rondaxe and Dart Lake, highlighting the utility of eDNA for tracking community changes. 

 

Figure 23. Presence-absence data for species in Lake Rondaxe. Filled, grey cells represent the 

presence of species determined by catch data and filled, green cells represent the presence of 

species determined by eDNA pilot samples.  
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Figure 24. Presence-absence data for species in Moss Lake. Filled, grey cells represent the 

presence of species determined by catch data and filled, green cells represent the presence of 

species determined by eDNA pilot samples.  

  

Figure 25. Presence-absence data for species in Dart Lake. Filled, grey cells represent the 

presence of species determined by catch data and filled, green cells represent the presence of 

species determined by eDNA pilot samples.  
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Fish species accumulation curves with eDNA sampling effort  

eDNA samples collected for this pilot study produced species lists that closely resemble  

those from historical catch data, yet did not indicate a plateau in fitted species accumulation 

curves (Figure 26). We conclude that the majority of species are successfully detected in eDNA 

sampling using our pilot methodology (n=16 samples per lake; 150mL filtered per sample), but 

that a combination of low abundance and ephemeral presence in lake habitats allowed some 

species to be overlooked. As highlighted by previous literature, lakes in the Adirondacks are 

highly connected (Daniels et al. 2008) and fish readily move back and forth between fluvial and 

lacustrine ecosystems. Highly connected lakes that have communities influenced by dispersal 

often do not conform to the accumulation patterns of closed systems, hence accumulation 

curves may not achieve their expected asymptote (Dove and Cribb 2006). For instance, in spring 

samples, species accumulation curves for our results from Sagamore Lake and Moss Lake 

suggest an asymptote at a similar number of species, but the curve of Moss Lake accumulates 

more gradually (Figure 26). Previous literature (Daniels et al. 2008) has suggested that Moss 

Lake is highly connected with Dart Lake and Lake Rondaxe, and exchanges of species among 

these lakes may drive the apparent low species accumulation rate in Moss Lake.  

Seasonal differences in species accumulation were observed in some lakes. In general, 

lakes tended to accumulate higher numbers of species in the spring, though this trend was not 

consistent across lakes. These patterns may be influenced by spring snowmelt and seasonal fish 

movements, such as adult migrations for spawning or movement of juveniles from streams into 

lakes. Notably, Lake Rondaxe exhibited the highest species richness in the spring, with fitted 

accumulation curves approaching 25 species. Located at the intersection of several lakes and 

with a known history of species introductions, Lake Rondaxe may function as a hub for fish 

movement within the region.  
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Figure 26. Species accumulation curves from eDNA sampling of SCALE pilot lakes. The left column 

represents spring sampling events, and the right column represents fall sampling events. The 

upper row presents results from individual 150mL field samples; the bottom row illustrates 

simulated 300mL samples (pooled results from two 150mL replicates collected at the same time 

and location). Pink diamonds represent the number of samples at which 90% of the projected 

number of species would be recorded.  

To evaluate the potential effect of larger sample volumes on species accumulation, we 

combined sequence data from replicate samples taken at the same time and location, effectively 

creating 300 mL composite samples from two 150 mL replicates (Figure 26, bottom row). These 

larger volume samples demonstrated, on average, a 1.8X increase in species information 

content, meaning they detected far more species per sample but were somewhat less efficient 

per unit volume than additional small-volume samples from other locations. Species 

accumulation curves suggest that even with 300 mL volumes, a very large number of samples 

would be required to fully profile community diversity. This finding has motivated the SCALE 

eDNA team to plan future sampling around 2 L samples collected from a broader zone within a 
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sampling site. Shifting to larger volumes and less-fine filters is becoming more standard practice 

in eDNA surveys, with the goal of improving detection of rare or low-abundance taxa while also 

minimizing the total number of samples required.  

Some lakes, particularly small systems like East Copperas and Little Clear Pond, displayed 

unexpected accumulation patterns. For example, Little Clear Pond is known from historical data 

to support only brook trout and brown bullhead, yet eDNA sampling yielded up to five species. 

Contamination is unlikely, as negative controls (blanks) were clean. Index hopping 

(GuenayGreunke et al. 2021), a sequencing artifact that can occur when highly similar barcodes 

lead to incorrect assignment of reads to samples, could be a possible explanation for observed 

patterns in small lakes. To address this, future sequencing will adopt higher-accuracy platforms 

(e.g., MiSeq rather than NextSeq) and revised library preparation protocols. Additionally, 

replacing dual indexing with matching forward and reverse barcodes may reduce or eliminate 

index hopping during demultiplexing, although this would reduce the number of samples that 

can be multiplexed in a single sequencing run (i.e., a non-trivial efficiency cost). Index hopping is 

a more problematic issue in samples with low species diversity and low data yield, where even 

minor index hopping during demultiplexing can have a disproportionate effect and overwhelm 

true signal. This pilot study has helped our team to identify this suite of technical issues to be 

addressed in future eDNA sampling and laboratory analyses.  

  

Seasonal and habitat detection heterogeneity  

Most detected species (68%, on average) were present in samples from both seasons, 

whereas 16% were detected only in the fall and 16% were detected only in the spring. The lake 

with the highest percentage of species detected in both seasons was Upper Cascade Lake 

(87.5%), which had one of the richest fish faunas among our pilot lakes.  

Both spring and fall were similar in their detection variability across habitats. The 

category of species that was most different in detection between spring and fall was those 

detected only in the nearshore environment. In spring, the average percentage of species only 

detected in the nearshore environment was 15.49% while the same category for fall was 7.21%. 

It is possible that juvenile fish aggregating in the shallows or seasonal movement of adult fish 

for spawning in the spring are being captured by our eDNA sampling, but seasonal differences in 

physical mixing of lake waters could also be involved.  Thus, we are unable to resolve the 

explanation for this pattern.  

Species commonly associated with shallow water environments (e.g. golden shiner) were 

typically found in both nearshore and offshore surface water sampling. Similarly, species 

commonly associated with deepwater environments (e.g. round whitefish in Upper Cascade), 

were detected primarily in offshore habitats (both deep and shallow) across both seasons.  
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Taken together, these results suggest that spring and fall eDNA sampling each capture a 

modest number of unique species records, potentially due to seasonal movement patterns. 

However, we conclude that sampling in both seasons is not necessary to capture the dominant 

species in the fish community of Adirondack lakes, especially if we enhance the volume of water 

filtered and integrate a broader sampling area per sample.  In contrast, in any season, sampling 

distinct habitats is necessary to detect a variety of species that are habitat specialists, including 

certain species of special conservation concern in the State of New York (e.g., brook trout and 

round whitefish). Thus, we recommend continuing collection of both nearshore and offshore 

samples, but the team should consider vertical integration of offshore samples to reduce the 

number of habitat classes from three to two.  

  

Detection of insects and mussels by eDNA  

eDNA samples were also analyzed to evaluate the detectability of mussels and insects,  

which lack historical survey data for comparison. These efforts were exploratory and relied upon 

barcoding loci that were drawn from recent literature on each group. For the insect eDNA 

survey at Moss Lake, non-biting midges (Chironomidae) were by far the most highly detected 

arthropod family, representing 72.1% of the 1,701,260 reads sequenced across the dataset. This 

accords well with previous uses of this barcoding locus, which is highly sensitive to dipterans. 

The second and fourth most common families were both terrestrial insects: Lauxaniidae flies 

(9.7%) and Caeciliusid barklice (1.5%), which presumably fell into the water. The top 10 families 

detected in Moss Lake samples are shown in Table 5, which includes two families of water fleas 

(microcrustaceans). We find these results intriguing and recommend that the SCALE team 

consider expanding the use of insect eDNA primers given the long history of using aquatic 

insects as bioindicators of environmental condition. Unlike fish, there is no existing data on 

differences in insect assemblages among Adirondack lakes, but eDNA findings could establish a 

baseline for interpreting future faunal changes.  
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Table 5. eDNA sequence assignments to arthropod families from Moss Lake samples.  

Mussel primers amplified DNA from all lakes. Across all the pilot lakes, four taxonomic  

Order  Family  Number of Reads  Percent of Reads (%)  

Diptera  Chironomidae  1226808  72.1117  

Diptera  Lauxaniidae  165379  9.721  

Diptera  Chaoboridae  96201  5.6547  

Psocodea  Caeciliusidae  25850  1.5195  

Trichoptera  Sericostomatidae  23061  1.3555  

Ephemeroptera  Ephemeridae  23006  1.3523  

Anomopoda  Chydoridae  14879  0.8746  

Anomopoda  Macrotrichidae  14617  0.8592  

Diptera  Ceratopogonidae  18518  1.0885  

Diptera  Simuliidae  16891  0.9929  

groups were identified: Utterbackia imbecillis, Elliptio complanata, Elliptio hopetonensis, and a 

set of similar sequences belonging to the genus Elliptio that did not match any particular species 

in the reference database. Elliptio hopetonensis is narrowly endemic in Georgia, while Elliptio 

complanata is wide ranging across the entire east coast of the United States, including Georgia. 

As Elliptio hopetonensis was only detected in one of our samples, it could be the result of 

sequencing error. However, the taxonomic assignment of some of our samples to Elliptio 

hopetonensis could also arise from taxonomic misidentifications within the reference database, 

which includes other Elliptio species whose geographic range overlaps with that of E.  

Hopetonensis. To tackle these challenges in mussels, a group with poor representation in the 

genetic databases, we will be generating Adirondack-specific mussel databases (described 

further below in “Synthesis and next steps”). Utterbackia imbecillis was only detected at the 

outlet of Moss Lake and is known to be a riverine species native to the region. The full, habitat-

level breakdown of where each taxonomic group was observed is shown above in Table 6. In all 

lakes, mussels were most frequently detected in the near-shore environment, although mussel 

eDNA was also detected in some offshore sites, with more offshore detections being from 

surface samples than from deep samples.  
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Table 6. eDNA detections of unionid mussels in SCALE pilot samples.  

Lake  Habitat  
Sites with 

detections  
Taxon  

East Lake  
Nearshore  4/5  

Elliptio sp.  

Offshore surface  2/5  

Heart  
Offshore deep  1/10  

Nearshore  1/10  

Moss Lake  

Offshore deep  3/10  

Nearshore  10/10  

Offshore surface  10/12  

Rondaxe  

Offshore deep  6/9  

Nearshore  7/10  

Surface  8/12  

Sagamore  

Offshore deep  5/14  

Nearshore  7/14  

Offshore surface  8/16  

Sagamore  

Offshore deep   3/14  

Elliptio complanata  Nearshore  12/14  

Offshore surface  4/16  

Moss Lake  Nearshore  1/10  Elliptio hopetonensis  

Moss Lake  Offshore surface  1/12  Utterbackia imbecillis  

  

During this pilot study, we did not sample for the physical presence of mussels. Previous 

sampling efforts of the Adirondack Fishery Research Program have found populations of Elliptio 

complanata in East Lake, suggesting that eDNA is successfully capturing true, known 

populations.  Unfortunately, that is our only check on inferences regarding mussels in this pilot 

study.  

  

Synthesis and next steps  

Overall, our results indicate that most fish species were detected in both seasons, with 

some additional species detections were season specific. Similarly, most species were detected 

across all habitat types (nearshore, offshore shallow, offshore deep), but some important 

species were unique to specific habitats (e.g., round whitefish in deep habitats of Upper 

Cascade Lake). eDNA detections aligned well with both contemporary and historical catch data 
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in most cases. Insect detections were dominated by chironomid midges and suggested that 

many taxa were present. Mussels were detected in five lakes, most commonly in nearshore 

habitats. We conclude that eDNA is highly promising as a scalable and cost-effective component 

of future surveys, offering unique power to inventory present-day aquatic biodiversity across 

multiple taxa.  We also conclude that eDNA surveys are suitable for revealing changes in the 

fauna of Adirondack lakes relative to historical baselines.  

The lessons from this pilot study are guiding refinement of our plans for future field 

sampling and lab analysis protocols for eDNA, particularly regarding the number and spatial 

distribution of samples. The pilot clearly demonstrated the importance of sampling both 

nearshore and offshore habitats to adequately capture fish community diversity. Additionally, 

the majority of species are reliably detected across seasons, indicating that a single site visit 

between May-September will suffice for community characterization. However, more intensive 

sampling across multiple seasons might be necessary to detect rare and ephemeral species that 

move in and out of lake systems. Thus, we recommend delving further into temporal stability of 

eDNA detections by collecting seasonal samples in future sampling efforts.  Performing monthly 

sampling of that modest number of lakes may also offer compelling insights into the seasonal 

dynamics of species composition in Adirondack lakes, providing an important phenological 

baseline for future evaluations of climate change impacts.  

Although the species lists detected by eDNA captured major community members 

historically present in the pilot lakes, current species accumulation curves based on 150 mL and 

300 mL samples suggest that a prohibitively high number of samples would be required to fully 

characterize communities under the existing protocols. Simulations of collecting larger sample 

volumes (300 mL) indicate potential to gather more information per sample processed, hence 

we recommend that future surveys be based on filtering 2.0 L of lake water per sample, which is 

becoming more common in eDNA research. We will continue to explore simulation approaches 

to refine the recommended sample volume and identify the number of samples required to 

meet or exceed the detection probabilities evident from this pilot work.   

Another key issue is the size of the lake: pilot eDNA data suggest that sampling intensity 

should be adjusted with lake size. For instance, small systems such as Combs Lake exhibited low 

fish diversity (just two fish species in recent catch data as well as every eDNA sample), 

suggesting that minimal sampling is sufficient in these systems. In contrast, large lakes like Little 

Moose Lake showed high species richness and habitat heterogeneity, but our pilot eDNA 

sampling overlooked a number of fish species documented by the Adirondack Fishery Research 

Program. Many of the species expected in Little Moose Lake were not detected in fall-only eDNA 

sampling, indicating that both increased sample volume and spatial coverage might be needed 

for adequate biodiversity assessment of such a large lake.  
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For genetic analyses of eDNA samples, our experience from this pilot study indicates that 

future eDNA surveys should utilize single index barcodes that are incorporated into both sides of 

reads. This would require identical index sequences to be present on both ends of the reads, 

which reduces the possibility of index hopping during the demultiplexing process. Unexpected 

species detections in small lakes during the pilot study may be attributed to this sequencing 

artifact, which occurs when sequencing reads are misassigned to incorrect samples during 

demultiplexing (Guenay-Greunke et al. 2021). By using unique, matching indices on both the 

forward and reverse reads rather than combinatorial indexing, a revised protocol can minimize 

false positives and improve community characterization across all sampled lakes.  

Due to the success of the Moss Lake aquatic macroinvertebrate eDNA exploration, we 

recommend expanding sampling efforts to characterize macroinvertebrate communities using 

eDNA. The literature suggests that dipterans are sensitive to environmental change and should 

be quite useful in eDNA biomonitoring efforts (Keck, Brantschen and Altermatt 2023). The 

inherent difficulty in taxonomically identifying aquatic dipterans (especially chironomids) to 

genus or species level via microscopy has excluded them from being a significant part of 

traditional bioindices, which instead focus on Ephemeroptera, Trichoptera, and Plecoptera (EPT, 

e.g., (Zweig and Rabeni 2001). However, the sensitivity of the widely used aquatic 

macroinvertebrate primers to amplification of Chironomidae have revealed greater biodiversity 

and community sensitivity to change than previously understood. The primers used here 

amplified dipteran DNA effectively but are biased against Trichoptera and Odonata (Leese et al. 

2021), two groups that were demonstrated to be present in most lakes by pilot sampling for 

stable isotope analyses of macroinvertebrates. To reduce these biases and increase our ability to 

compare eDNA data with traditional macroinvertebrate surveys, we recommend testing 

additional macroinvertebrate primers that focus on EPT amplification, which could be paired 

with the primers used in our pilot analysis of Moss Lake samples. Future sampling efforts should 

include paired eDNA and aquatic macroinvertebrate surveys on a subset of lakes to enable 

confirmation of detected taxa.   

Based on the low detection and poor taxonomic identification of our mussel samples, we 

recommend producing a customized freshwater mussel mitochondrial genome reference 

database for the Adirondack Park. In support of that goal, we have already collected both 

voucher specimens and tissue samples from Adirondack waters in 2024. To account for genetic 

variation found across isolated populations of freshwater mussels, we sought to collect tissues 

from every species in each of the 5 major drainage basins within the park. Our pilot work also 

made us aware of a major complication with freshwater mussel eDNA.  Freshwater mussels 

exhibit heteroplasmy; in addition to the standard matrilineal mitochondrial inheritance, male 

mussels also inherit male-type mitochondria patrilineally (e.g., Wen et al. 2017). The sequence 
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divergence between the male- and female-type mitochondrial haplotypes of a single individual 

can be greater than the divergence between two male-type or female-type mitochondria of  

different species. This unique life history trait may have also led to the poor taxonomic 

matches that characterized some of our results. To accommodate this revelation, we plan to 

extract and sequence DNA from the gonads of the male voucher specimens in addition to the 

mantle tissue. After we produce an updated reference database, we will evaluate the Dokai et al 

(2023) freshwater mussel primers to confirm their efficacy for Adirondack freshwater mussel 

species. Future sampling efforts should incorporate searches for mussels into standard 

macroinvertebrate surveys to provide confirmatory manual sampling. It remains unclear 

whether mussel eDNA can be effectively integrated into plans for future analyses, but we 

recommend that the team continue to seek an effective way to address this vulnerable taxon for 

which traditional field surveys are challenging and time-consuming.   

Data availability  

All sampling metadata has been deposited in the EPA Water Quality eXchange (WQX) 

database with notes in the “Result Comment” header mentioning that the sampled water was 

stored as an eDNA filter and that the raw sequence data is hosted by the National Institutes of  

Health National Center for Biotechnology Information (NIH NCBI) short read archive (SRA) under 

BioProject PRJNA1246971, as is typical for sequence data. All SCALE pilot eDNA samples are 

uploaded on the WQX platform by the organization ID “CORNELLSCALE” under project “SCALE”.   

    

Stable Isotopes  
Overview and motivation  

This pilot study was designed to address a set of four sampling uncertainties to guide 

future SCALE research. First, we wanted to test whether stable isotope compositions of benthic 

macroinvertebrate taxa are consistent within the same lake across seasons, despite potential 

shifts in benthic macroinvertebrate community composition and trophic ecology. Second, we 

wanted to identify which macroinvertebrate taxa are commonly observed across most lakes, 

and test whether stable isotope analysis of benthic macroinvertebrate tissues can reveal food 

web patterns in Adirondack lakes. Third, we wanted to explore whether hydrogen and sulfur 

isotopes could help refine understanding of the contribution of terrestrial energy sources and 

deep-water deoxygenation, respectively, to the food web.  Finally, we wished to resolve how 

many different sites within a lake should be sampled to obtain a representative isotopic baseline 

from macroinvertebrates. To address all these issues, we sampled four lakes during one season 

and eight lakes during two seasons for both benthic macroinvertebrates and their potential food 
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resources (i.e. periphyton, leaves, and zooplankton). When possible, we also collected fishes to 

represent higher trophic levels.  

  The characterization of food webs through stable isotope analysis requires an 

appropriate lake-specific baseline to enable comparisons across different ecosystems (Post 

2002). We surveyed benthic macroinvertebrates to determine the most appropriate taxa to use 

as isotopic baselines during surveys of Adirondack lakes. This work is a key step in preparing for 

food web sampling and analysis for SCALE, including interpretation of results from fishes. 

Invertebrate taxa used to establish isotopic baselines for ecosystem comparisons should be 

commonly found across the landscape, and should include primary consumers (i.e., algae 

grazers or filter feeders). Mollusks are commonly used in this context (Post 2002), but the low 

calcium availability of Adirondack waters—especially following a century of acid precipitation— 

makes them challenging to find.   

Sample collection process  

  We conducted three tiers of lake sampling intensity for stable isotope analyses of animal 

tissues: “seasonal with site intensity”, “seasonal”, and “fall only” (Table 7). This series of 

sampling approaches was designed to balance sampling intensity within a lake against the 

number of lakes included in comparisons.  Taken together, the datasets were intended to 

address all four study design questions indicated earlier by informing the amount of variance 

attributable to sites within lakes, seasonal variation, and between-lake differences.   

At each site, we conducted traditional sampling of benthic macroinvertebrates with 

either D-Frame net sweeps or searches, both of which are frequently used in isotopic baseline 

surveys (Post 2002; Jardine, Kidd and Cunjak 2009). We conducted three, thirty-second sweeps 

using a D-Frame net and combined all samples to form a composite sample of benthic 

macroinvertebrates for each site. Additionally, ten-minute searches were conducted by 

manually searching woody debris and rocks for clinging macroinvertebrates that would be 

missed in D-Frame net sweeps. We also sampled leaves and periphyton from each lake through 

manual grabs and scrapes. We sampled zooplankton from each lake with a 64µm zooplankton 

tow taken vertically from the thermocline to the surface. Finally, we collected fish, when 

possible, to verify that the sampled invertebrates provide a robust basis for interpreting the 

isotopic composition of fishes in the same lake. After collection, benthic macroinvertebrates and 

zooplankton were placed in clean water and were held for at least 12 hours in order to evacuate 

their gut contents. After collection and gut evacuation, tissue samples from each taxon were 

frozen for later processing in the lab at Cornell.  

 

 



62  

  

Table 7. Sampling strategies that describe the seasonal and site intensity used within each lake.  

  Sites Sampled 

Category Water Spring Fall 

Seasonal with site 

intensity 
Dart Lake  

Moss Lake 
4 
4 

2 
2 

Seasonal 

Sagamore Lake 
Rondaxe Lake 

Upper Cascade Lake 
Little Clear Pond 

East Copperas Pond 

Heart Lake 

2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 

Fall only 

Little Moose Lake 
East Lake 

Combs Lake 
Green Lake 

0 
0 
0 
0 

2 
2 
2 
2 

  

  

Laboratory processing  

In the lab, all benthic macroinvertebrates were identified to the lowest possible 

taxonomic unit using Freshwater Macroinvertebrates of Northeastern North America (Peckarsky 

et al. 1990) and enumerated. For stable isotope analysis, we analyzed whole invertebrates. Each 

invertebrate was inspected to determine if the gut tract was empty. If the gut tract had not 

evacuated during the overnight holding period mentioned above, we removed it. However, if 

the gut tract had evacuated, we left invertebrates whole. Periphyton and zooplankton samples 

were processed as bulk samples and were not identified past assemblage type. Leaves were 

attributed to a tree species based on their shape, and we sampled only leaf material (no woody 

petiole or veins). Fishes were identified to species, and dorsal white muscle was dissected out 

for analysis (no skin, scales, or bones).    

We oven-dried all samples (60C, 48 hours), then ground them into a fine powder using a 

spatula inside their glass storage vial.  We analyzed all samples for δ13C and δ15N, then 

processed ~ 25% of samples for δ34S and δ2H.  

Benthic macroinvertebrate distributions  

  We identified a broad variety of macroinvertebrate taxa in the surveyed Adirondack 

lakes. The most commonly observed taxa included Odonata, Ephemeroptera, Amphipoda, and  
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Trichoptera (Table 8). We calculated three metrics to determine how common each taxon was 

across lakes, sites, and seasons. First, we quantified lake-level occurrence as the proportion of 

lakes in which a taxon was present in at least one sample (N = 12). Second, we calculated site-

level occurrence by averaging, across lakes and seasons, the proportion of sites within each lake 

where the taxon was detected. Finally, we assessed seasonality using only lakes sampled in both 

seasons, calculating the proportion of those lakes where the taxon occurred in both spring and 

summer.  

We did not find any single species of macroinvertebrate across all lakes, indicating that 

we will likely need to obtain a range of taxa in order to be confident that we can develop 

comparable baseline isotope ratios based on an overlapping set of taxa across all waterbodies. 

Most common taxa were observed from a particular lake during both spring and fall. The within-

lake distribution of taxa also varied; some families frequently occurred at all sampled sites (e.g., 

Heptageniidae), while others (e.g., Polycentropodidae) were typically observed at only a subset 

of sites within a lake (Table 8).  

Table 8. Details of the most frequently observed taxa across the twelve surveyed lakes. Values 

represent how broadly species were distributed across lakes (proportion of lakes), across sites 

within a lake (proportion of sites within a lake, averaged across lakes), and across seasons within 

a lake (average across lakes of likelihood of being observed at 1 or more sites in one season [0.5] 

vs. both seasons [1.0]).  

  

  

Benthic macroinvertebrate trophic positions and source contributions  

  We estimated trophic positions by standardizing the δ15N values of macroinvertebrates 

against that of basal resources (i.e., zooplankton, periphyton, and leaves) within each lake, 

accounting for the expected fractionation between trophic positions (3.4 ‰ δ15N) (Post 2002). 

From the estimated trophic positions, we distilled a list of taxa that could potentially serve as 

low-trophic position (median <1.5) reference points (“baselines”) across lakes. For these taxa, 

we further examined their variation within a lake based on sampling season and site (Figure 27).  
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Figure 27. Estimated trophic positions for a subset of the surveyed taxa that had median trophic 

positions less than 1.5, indicating the taxon’s potential to represent a baseline.  

  

It is ideal to identify a suite of animal taxa that provide a baseline for each major energy 

flow pathway fueling the food web (periphyton, phytoplankton, terrestrial inputs). Thus, we 

used stable isotope ratios measured from periphyton, zooplankton, and tree leaves as 

endmembers for estimating energy flow to each macroinvertebrate taxon using three-source 

mixing models of δ13C and δ15N in the R package ‘simmr’ (version 0.5.1.216; (Parnell et al. 2010). 

This allowed us to identify which taxa had high proportional contributions from periphyton (to 

represent the benthic baseline) for comparison to zooplankton (which represents the pelagic 

baseline; Figure 28).   
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Figure 28. Contribution of isotopic baselines for terrestrial subsidies (e.g. leaves), benthic 

baselines (e.g. periphyton), and offshore baselines (e.g. zooplankton).  

  

Seasonal effect on trophic position and source contributions  

After correcting for baseline variation, we found no consistent differences by season 

across lake macroinvertebrate taxa, indicated by minimal variation in both their trophic 

positions and energy source contributions between seasons.  This suggests that sampling just 

once between May and September should be adequate to capture variation in lake-level 

differences in isotope baselines.    

Site-level variation in baselines  

If macroinvertebrates used to estimate baseline stable isotope ratios are themselves 

spatially variable within a lake, it could add substantial uncertainty to all subsequent 

calculations. Our pilot sampling was designed to resolve the magnitude of variation within a 

taxon across sites in the same lake, and whether there were systematic spatial differences 

across all taxa. We quantified the 95% confidence intervals for the entire macroinvertebrate 

community for δ15N and δ13C, and found extensive overlap in most cases, indicating little site-

specific variation.   

Moss Lake (MSL) and Dart Lake (DTL) were sampled in both seasons and with extra sites 

in Spring.  One of the four DTL sites showed minimal overlap with the other three sites during 

Spring sampling (Figure 29). In most other cases, there was sufficient overlap in community 

isotope space to infer that spatial variation is relatively minor.  In addition, to the extent that 
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there were spatial differences, they arose primarily on the δ13C axis rather than δ15N. Given that 

the isotopic composition of macroinvertebrates was occasionally different among sites within 

each lake, we suggest that future SCALE sampling should include at least two sites per lake to 

establish isotopic baselines   

  

Figure 29. Evaluating inter-site differences in isotopic composition (δ13C and δ15N) of benthic 

macroinvertebrates from lakes sampled during the spring. Each panel is a lake, and the color 

indicates the nearshore site within each lake. Points represent raw isotopic compositions for 

individual samples with 95% confidence intervals around all individuals at each site. The 

sampled taxa in each lake include 1-12 families of benthic macroinvertebrates representing 

snails, midges, beetles, mayflies, caddisflies, alderflies, damselflies, and dragonflies.  

Isotopic composition of fishes   

We analyzed fish from a subset of the sampled lakes to ensure that the results from 

benthic macroinvertebrates and basal resources were adequate to interpret energy flow and 

trophic position of fishes, which will be a key objective for SCALE. We found that fishes were 

consistently higher in δ15N, as expected, than all basal resources. Their δ13C was also 

intermediate between tree leaves and periphyton in most lakes and fell within the range of 

macroinvertebrate taxa in all cases (Figure 30). Thus, we have no concern about being able to 

use basal resource and macroinvertebrate samples to interpret the energy flow and trophic 

position of fishes in Adirondack Lakes.   

  



67  

  

 

Figure 30. Summary of the isotopic ranges for both δ13C and δ15N for all major biotic groups 

sampled during the pilot, as represented by color. Each point represents the mean isotopic 

composition for that group with the range of each isotope represented by the vertical and 

horizontal lines.  

  

Deuterium and sulfur isotopes  

Our goal in quantifying δ2H and δ34S for a subset of samples was to determine whether 

these less-used isotope ratios would be useful for resolving the influence of terrestrial energy 

subsidies (δ2H differs sharply between terrestrial and aquatic primary producers) and low 

oxygen conditions (δ34S is highly redox sensitive due to fractionation during sulfate reduction) 

on Adirondack lake food webs. We found a clear positive relationship between δ2H of benthic 

macroinvertebrates and the [DOC] across all sampled lakes.  There were no consistent seasonal 

shifts in δ2H. This suggests that inputs of terrestrial carbon to lakes enhance the δ2H of the food 

web (Figure 31), hence δ2H can be used as a broad proxy for terrestrial energy subsidies.   

For δ34S, we compared the δ34S compositions of all benthic macroinvertebrates to the 

minimum depth (m) at which low oxygen concentrations (< 5 mg/L dissolved oxygen) arise. This 

depth was unique to each lake and was determined from oxygen profiles collected during each 

sampling visit. We found no strong relationship between the δ34S and the depth where oxygen 

stress began (Figure 31). Thus, we recommend further investigation of the causes of differences 

among lakes in δ34S before it is integrated deeply into SCALE.  
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Figure 31. (Left) δ2H of macroinvertebrates increases with dissolved organic carbon (DOC) 

concentrations, suggesting a positive relationship between dissolved organic carbon and the 

contribution of terrestrial energy subsidies to lake food webs. (Right) δ34S shows no strong 

relationship with the depth where oxygen stress begins (5 mg/L).  

  

Baseline candidates  

We identified a set of primary consumers (trophic position ~ 1) that can serve as useful 

indicators of the baseline for major energy inputs to food webs in Adirondack lakes. We have 

selected the most common of these taxa, Heptageniidae, as the primary taxon to represent 

periphyton baselines. Given the heterogeneity of benthic macroinvertebrates communities 

across sites, seasons, and lakes, we also selected a set of secondary taxa that should be 

collected from sites where Heptageniidae cannot be found. These taxa include other 

Ephemeroptera and several families of snails (when available). We also recommend that 

zooplankton samples be taken at multiple locations within the lake as no benthic 

macroinvertebrates adequately represented the planktonic energy pathway.      

Recommendations for future field sampling for SCALE  

Our pilot sampling was designed to determine the value of using stable isotope analysis 

of benthic macroinvertebrates to characterize food webs across Adirondack lakes, and to guide 

decisions about the number of lakes, sites within lakes, and seasons of the year to target for 

stable isotope sampling for SCALE. Our analyses of the same macroinvertebrate taxa from the 

same lake in different seasons suggests that stable isotope composition of benthic 

macroinvertebrates is quite temporally stable compared to differences among lakes.  

Nonetheless, we recommend that SCALE sampling be focused on the May-Sept warm season to 

minimize any minor seasonal effects.  The medium- and high-intensity lakes may offer an 

opportunity to further test for finer-scale seasonality of stable isotope ratios within a lake.   
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Second, our pilot sampling indicated that benthic macroinvertebrate communities vary 

widely across lakes, complicating the design of a simple, consistent set of taxa for comparisons 

across SCALE lakes. Despite this heterogeneity in benthic macroinvertebrate communities, we 

were able to identify a portfolio of taxa that can be found across most sites and will provide a 

robust baseline for cross-lake comparisons. Differences in benthic macroinvertebrate 

communities reflected the availability of various habitat types; large, deep lakes had different 

nearshore communities compared to shallow, boggy lakes. Additionally, we aimed to determine 

if the benthic macroinvertebrate communities can reveal food web patterns within Adirondack 

lakes. We observed that the benthic macroinvertebrate communities adequately represented 

the range of isotopic composition of fish tissues within lakes where both were sampled. We also 

observed expected differences in isotopic compositions between the benthic macroinvertebrate 

functional guilds, suggesting that stable isotope ratios are functioning well to showcase the 

trophic diversity of benthic macroinvertebrate communities.   

For our third objective, we evaluated the usefulness of δ2H and δ34S as tracers of 

terrestrial energy sources and environmental deoxygenation, respectively. We found that δ2H 

displayed the expected relationship with terrestrial subsidies (in the form of DOC), suggesting 

that measuring hydrogen isotopes from a modest subset of samples will be useful to describe 

differences among lake food webs in terrestrial energy inputs. In contrast, there were no clear 

patterns of δ34S with respect to observed deep-water deoxygenation. Further work would be 

needed to resolve appropriate inferences from δ34S in Adirondack lakes.   

Our fourth and final objective was to determine how many different sites within a lake 

should be sampled to represent isotopic baselines using benthic macroinvertebrates. We found 

moderate spatial variation among sites in a few lakes, but most lakes exhibited consistent 

isotopic composition of benthic macroinvertebrate communities across sites. Therefore, we 

recommend sampling from multiple sites per lake in order to establish an isotopic baseline 

against which to interpret results from fish.   

This pilot study also provided an opportunity to test and refine methods for rapid 

collection of invertebrates from lakes of all sizes. For nearshore samples, we conclude that 

targeted searches of microhabitats favored by specific taxa will be the most efficient way to 

sample macroinvertebrates for isotopic baselines. If broader collections are needed, timed 

sweeps with D-frame nets were also effective but yielded large amounts of detritus that must be 

sorted. Because zooplankton tows are straightforward, and zooplankton are essential as the 

pelagic endmember for quantifying energy sources for the food web, we recommend collecting 

samples from multiple offshore locations. Similarly, to represent terrestrial-derived energy 

inputs, we recommend collecting fresh leaves from three common tree or shrub species in the 

riparian zone of each lake.  
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Next steps  

The recommendations outlined above will be incorporated into the QAPP and field 

protocols for Year-1 of full sampling for SCALE in 2025. Our most important findings are that 

stable isotope samples may be collected any time during the warm season but should be 

collected from multiple sites within each lake to account for potential spatial variation. To 

characterize the base of the food web in each waterbody, baseline collections at each lake will be 

sampled from at least three sites along the perimeter in the littoral zone and three pelagic sites. 

Fish collections within the lake will occur within 1km of any baseline sampling site. In larger 

waterbodies, we will sample from a maximum of 5 sampling sites to increase our chances of 

encountering fish taxa that may partition the potentially more heterogeneous environment. All 

baseline sampling sites will be no further than 1 mi from another site. We will not specifically 

target particular habitats. We will continue to assess which macroinvertebrates are most suitable 

as secondary taxa for quantifying isotopic baselines, thereby ensuring commensurate 

comparisons across lakes. All these lessons will help to ensure the success of SCALE sampling in 

Year-1 and beyond.  

  

Data availability  

All stable isotope and taxon information were made publicly available through the EPA’s 

Water Quality Exchange (WQX) portal by the organization ID “CORNELLSCALE” under project 

“SCALE”.  
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Appendix  
Appendix A: List of Potential Low Intensity Lakes  

NHDID  LAT  LONG  PONDNAME  ELEV  WAREA  SAREA  DEPTH  HU8name  

92080871  44.850319  -73.850703  MOON POND  411  687  2  2  Lake Champlain  

129690692  44.567544  -73.817367  WHISTLE POND  431  40  4  3  Saranac River  

92081613  44.590878  -73.770697  MUD POND  359  385  7  1  Lake Champlain  

129690712  44.563381  -73.913478  MUD POND  418  946  44  2  NA  

129690762  44.543939  -74.079872  LINE POND  511  10  2  11  NA  

129690817  44.527550  -74.103206  LAKE KUSHAQUA  509  7387  153  28  Saranac River  

129690806  44.515883  -74.124875  LITTLE HOPE POND  521  38  3  6  NA  

129690808  44.511994  -74.124597  BIG HOPE POND  522  194  9  12  NA  

129690813  44.505883  -74.114319  BUCK POND  507  388  53  4  Saranac River  

129690823  44.488661  -74.134319  RAINBOW LAKE  508  1707  144  18  Saranac River  

129690850  44.470608  -74.176544  RAINBOW LAKE INLET  508  980  35  3  Saranac River  

129690852  44.476442  -74.177378  UNNAMED POND  512  10  1  8  Saranac River  

129690838  44.487553  -74.166819  LOON POND  513  128  8  5  Saranac River  

129690868  44.436158  -73.974036  FRANKLIN FALLS FLOW  446  76491  184  6  Saranac River  

129690895  44.365883  -74.065986  MOOSE POND  472  1862  57  21  Saranac River  

129690928  44.324217  -74.074597  MCKENZIE POND  506  702  97  16  Saranac River  

129691038  44.260047  -74.038208  ALFORD POND  596  96  14  1  Saranac River  

129691088  44.259775  -74.150992  LITTLE PINE POND  488  105  2  2  Saranac River  

129691035  44.283386  -74.171269  SECOND POND  468  33362  33  3  NA  

129691035  44.288664  -74.183492  FIRST POND  468  33172  29  6  NA  

129690922  44.333942  -74.153489  LAKE COLBY  474  920  110  14  Saranac River  

129690924  44.351167  -74.209047  MCCAULEY POND  476  159  31  4  Saranac River  

129691110  44.250058  -74.282942  BARTLETT POND  475  11  1  2  Saranac River  

129691099  44.284781  -74.359053  BRANDY POND  488  128  2  3  Saranac River  

129691020  44.310614  -74.345442  FOLLENSBY CLEAR POND  480  1029  196  18  Saranac River  

129691003  44.326447  -74.355719  POLLIWOG POND  486  332  84  24  Saranac River  

129691008  44.336725  -74.367108  WEST POLLIWOG POND  486  7  1  6  NA  

129691154  44.302836  -74.364608  SQUARE POND  480  427  58  17  Saranac River  

129691056  44.308600  -74.355730  LITTLE ECHO POND  479  7  1  5  Saranac River  

129691083  44.300892  -74.397667  LITTLE EGG POND  487  4  0  10  NA  

129691085  44.299503  -74.389889  DUMP POND  485  223  12  4  NA  
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129691061  44.307281  -74.368497  S-W AMPHITHEATER POND  480  2  0  7  NA  

129691051  44.312003  -74.371831  EAST COPPERAS POND  479  15  4  6  NA  

129691055  44.313947  -74.383778  NORTH WHEY POND  488  9  1  8  NA  

129691046  44.316169  -74.382944  LITTLE NORTH WHEY  488  9  1  5  NA  

129691004  44.337003  -74.371553  MIDDLE POND  484  182  24  3  NA  

129691011  44.337558  -74.394333  UNNAMED POND  485  53  3  5  Saranac River  

129691001  44.343392  -74.397111  MARSH POND  494  12  2  7  NA  

 

129691017  44.339781  -74.411833  EAST PINE POND  484  115  26  10  Saranac River  

129690990  44.353114  -74.413222  PINK POND  492  221  5  4  Saranac River  

129690981  44.355614  -74.416000  NORTH PINK POND  489  41  2  3  Saranac River  

129690942  44.368947  -74.392664  LONG POND #3  494  22  1  1  Saranac River  

129690952  44.365614  -74.383219  SLANG POND  491  1013  20  7  Saranac River  

129690949  44.358114  -74.359053  HOEL POND  493  652  182  24  Saranac River  

129690964  44.347836  -74.336275  CHURCH POND  492  52  11  18  NA  

129691034  44.326447  -74.411278  UNNAMED POND  480  4  1  3  Saranac River  

129691090  44.323669  -74.409611  ROLLINS POND  480  2996  180  24  Saranac River  

129691053  44.317281  -74.424611  UNNAMED POND LOWER  482  221  4  4  NA  

129691060  44.304225  -74.398778  WHEY POND  481  133  43  6  Saranac River  

129691107  44.276169  -74.387667  DEER POND  490  174  47  20  Saranac River  

129690983  44.338114  -74.343219  GREEN POND  481  135  26  18  Saranac River  

129690946  44.352833  -74.311272  RAT POND  492  79  12  9  Saranac River  

129690961  44.344778  -74.300161  SUNDAY POND  485  109  4  11  NA  

129690930  44.355333  -74.285439  LITTLE CLEAR POND  487  631  142  24  Saranac River  

129690936  44.358667  -74.297383  LITTLE GREEN POND  488  69  28  12  NA  

129690919  44.372278  -74.289328  GRASS POND  492  39  8  10  Saranac River  

129690945  44.352278  -74.294328  SOCHIA POND  500  10  2  6  NA  

129690937  44.348389  -74.276828  LAKE CLEAR OUTLET  491  2803  47  3  Saranac River  

129690937  44.348389  -74.276828  LAKE CLEAR OUTLET  491  2803  47  3  Saranac River  

129690910  44.379500  -74.261269  ST. GERMAIN POND  497  47  5  5  Saranac River  

129690921  44.368944  -74.277383  CONLEY LINE POND  497  24  1  5  Saranac River  

129691103  44.267558  -74.290997  TAMARACK POND  472  222  6  3  Saranac River  
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115353579  44.480881  -73.716253  UNNAMED POND  375  15  2  2  Ausable River  

115353631  44.424214  -73.849311  MORGAN(COOPER KILL) POND  922  26  1  1  Ausable River  

115353747  44.330881  -73.917092  WARREN POND  561  70  2  4  Ausable River  

115353767  44.323103  -73.902922  OWEN POND  515  1139  8  9  Ausable River  

115353749  44.329214  -73.881533  MARSH POND  558  263  4  1  Ausable River  

115353811  44.294214  -73.942647  BIG CHERRYPATCH POND  504  230  5  5  Ausable River  

115353787  44.307825  -73.942092  TOM PECK POND  521  122  4  5  Ausable River  

115353799  44.295881  -73.965425  ECHO LAKE  570  61  7  2  Ausable River  

115353875  44.242269  -73.883756  UNNAMED POND  685  40  0  2  Ausable River  

115353967  44.148664  -74.037650  SCOTT POND  972  94  1  2  Ausable River  

115353949  44.179772  -73.967092  HEART LAKE  661  63  11  17  NA  

115353777  44.316158  -73.760694  CLEMENTS POND  503  60  2  6  Ausable River  

115353869  44.247547  -73.879589  UNNAMED POND  678  22  1  1  Ausable River  

115353879  44.237825  -73.860144  LOWER CASCADE LAKE  618  505  10  13  Ausable River  

115353909  44.224492  -73.874033  UPPER CASCADE LAKE  620  231  10  19  Ausable River  

115353849  44.256992  -73.712639  LOST POND  863  38  1  1  Ausable River  

115353975  44.143939  -73.738469  GIANT WASHBOWL  695  46  1  7  Ausable River  

92082313  44.284772  -73.556244  BIG POND  188  1115  22  2  NA  

115353641  44.399492  -73.651528  DOYLE POND  262  336  4  4  Ausable River  

 

92083097  44.116164  -73.559853  RUSSET POND  454  555  9  11  Lake Champlain  

92083105  44.109775  -73.549850  TANAHER POND  461  93  5  4  Lake Champlain  

92083099  44.112553  -73.541239  FIFTH POND  465  10  1  6  Lake Champlain  

92083133  44.123108  -73.723189  BULLET POND  469  17  0  1  Lake Champlain  

92083129  44.123942  -73.732081  ROUND POND  527  132  9  11  Lake Champlain  

92083177  44.100608  -73.723744  LILYPAD POND  465  40  1  1  Lake Champlain  

92083153  44.106164  -73.708467  CRANBERRY POND  482  9  1  1  Lake Champlain  

92083329  43.867003  -73.575403  BEAR POND  430  122  5  4  Lake Champlain  

92083363  43.821172  -73.547900  LOST POND  479  56  11  10  Lake Champlain  

92083367  43.839228  -73.571792  PUTNAM POND  399  1933  70  10  Lake Champlain  

92083355  43.837839  -73.594014  CLEAR POND  432  65  11  18  Lake Champlain  
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92083365  43.834228  -73.591236  MUD POND  457  267  1  2  Lake Champlain  

92083367  43.837561  -73.582347  NORTH POND  399  148  42  5  Lake Champlain  

92083573  43.598400  -73.534561  LOWER BLACK MTN POND  518  135  2  4  Lake Champlain  

92083569  43.597844  -73.525117  UPPER BLACK MTN POND  518  39  1  4  NA  

92083521  43.657842  -73.578175  BROWN POND  277  27  1  4  Lake Champlain  

92083515  43.682842  -73.644289  LONG POND  399  114  13  12  Lake Champlain  

165902470  43.708397  -73.616233  UNNAMED POND  451  47  3  2  Lake Champlain  

92083457  43.710342  -73.530675  JABE POND  400  230  60  23  Lake Champlain  

92083451  43.712564  -73.537064  LITTLE JABE POND  419  20  2  7  Lake Champlain  

92083575  43.593122  -73.516228  LAPLAND POND  524  169  4  5  Lake Champlain  

92083583  43.592844  -73.521783  UNNAMED POND  524  110  0  2  Lake Champlain  

92083601  43.588400  -73.527339  MILLMAN POND  571  41  2  7  Lake Champlain  

92083613  43.573678  -73.536228  FISHBROOK POND  559  167  14  17  Lake Champlain  

165902469  43.560622  -73.550950  BUMPS POND  582  31  2  6  NA  

92083725  43.497292  -73.578725  CROSSET POND  446  147  41  32  Lake Champlain  

52532837  43.430625  -73.557892  COPELAND POND  137  343  23  8  Mettawee River  

52532673  43.465625  -73.602339  THIRD POND  381  108  3  15  Mettawee River  

52532909  43.414514  -73.577058  HADLOCK LAKE  138  2269  84  13  Mettawee River  

52532543  43.493681  -73.585669  INMAN POND  411  44  3  9  Mettawee River  

52532659  43.473125  -73.550669  LAKE NEBO  255  374  50  23  Mettawee River  

52533243  43.352847  -73.755119  WILKIE RESERVOIR  395  64  10  6  Mettawee River  

132876070  44.753375  -73.893200  BRADLEY POND  501  1656  44  3  Chateaugay-English  

132876232  44.691711  -73.958478  UNNAMED POND  489  1997  1  2  Chateaugay-English  

132876274  44.675322  -73.962089  NORTH TWIN POND  532  104  10  2  Chateaugay-English  

132876286  44.671433  -73.966256  SOUTH TWIN POND  532  57  5  2  Chateaugay-English  

132876194  44.723100  -74.040425  MOUNTAIN POND  594  163  4  1  Chateaugay-English  

132876139  44.764494  -74.190992  PETER POND  393  264  5  2  Chateaugay-English  

132876182  44.750050  -74.187658  OWLSHEAD POND  423  2  0  2  Salmon  

132876179  44.748939  -74.185436  CHILDS POND  442  30  1  2  Salmon  

132876224  44.738383  -74.181267  FISHPOLE POND  450  45  2  2  Salmon  

132876478  44.630050  -74.199600  DEBAR POND  477  747  35  9  Salmon  
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132876501  44.597550  -74.137653  DUCK POND  500  230  24  4  Salmon  

 

132876492  44.601439  -74.126819  RAZORBACK POND  504  9  1  4  Salmon  

132876128  44.769492  -74.110708  INGRAHAM POND  501  523  54  5  Salmon  

132876321  44.705325  -74.136264  MOUNTAIN VIEW LAKE  453  11474  97  3  NA  

167435690  44.690881  -74.107931  DEERFLY POND  459  103  0  2  Salmon  

132876535  44.707544  -74.066539  RAGGED LAKE  528  3109  110  15  Salmon  

132876536  44.744489  -74.065147  LOWER LILYPAD POND  532  980  6  2  NA  

132876340  44.680325  -74.099039  GRASS POND  456  8  3  3  Salmon  

135270648  44.657831  -74.319886  DEER RIVER FLOW  444  7166  160  4  St. Regis  

135270641  44.650608  -74.278772  SPRING POND  449  16  1  2  St. Regis  

135270613  44.660331  -74.289328  HORSESHOE POND  444  1736  21  3  NA  

135271176  44.558394  -74.772136  CLEAR POND  396  52  14  7  Raquette  

135271593  44.357836  -74.430722  OTTER POND  518  27  5  16  NA  

135271580  44.382283  -74.437389  EAST POND  527  295  28  3  St. Regis  

135271558  44.380892  -74.386831  BESSIE POND  496  205  7  15  St. Regis  

135271488  44.397281  -74.378775  SKY POND  512  27  3  3  St. Regis  

135271547  44.377003  -74.346831  GRASS POND  503  222  9  4  St. Regis  

135271498  44.381722  -74.300439  GREEN POND  493  44  9  9  St. Regis  

135271564  44.366722  -74.311550  SOUTH OTTER POND  491  168  3  3  St. Regis  

135271555  44.370611  -74.313494  NORTH OTTER POND  494  102  1  3  St. Regis  

135270908  44.590894  -74.574619  EAST POND  410  45  4  2  St. Regis  

135270708  44.661447  -74.500447  MUD POND  395  16  3  1  St. Regis  

135270716  44.657281  -74.495447  GRASS POND  384  36  2  7  St. Regis  

135270711  44.660614  -74.497669  LITTLE CLEAR POND  384  36  2  14  NA  

135270885  44.545886  -74.266825  NORTHERN STAR MTN. POND  510  56  1  1  St. Regis  

135271022  44.518944  -74.298769  WARD POND  486  49  1  2  St. Regis  

135271076  44.502833  -74.292658  UNNAMED POND  476  11  0  7  St. Regis  

135271236  44.462000  -74.283492  LOST POND  518  27  2  4  NA  

135271075  44.492278  -74.254047  BEAVER VALLEY POND  503  64  4  2  St. Regis  

135271223  44.450331  -74.200156  JONES POND  504  1132  57  3  St. Regis  
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167401934  44.620336  -74.482392  UNNAMED POND  442  27  1  4  St. Regis  

135271288  44.446444  -74.293494  UNNAMED POND  515  51  1  3  NA  

135271322  44.436722  -74.300994  BLACK POND  498  344  29  14  NA  

135271335  44.431722  -74.270436  LOWER ST. REGIS LAKE  494  4427  142  12  St. Regis  

135271484  44.384500  -74.282939  ROILEY POND  499  355  6  4  St. Regis  

135271461  44.389778  -74.292106  LITTLE LONG POND  504  243  33  18  St. Regis  

135271439  44.391167  -74.276828  MIKES POND  497  2  1  10  NA  

135271422  44.394500  -74.282383  HUMDINGER POND  506  9  1  9  St. Regis  

132858821  44.412006  -75.043811  HORSESHOE POND  308  73  7  13  Grass  

132859738  44.445342  -74.984919  CRANBERRY POND  302  300  8  1  Grass  

132858629  44.465342  -74.961308  TWIN POND UPPER  332  12  2  4  Grass  

132858799  44.379786  -74.769631  CHURCH POND  472  120  10  3  Grass  

132858801  44.391175  -74.871858  BLUE POND  395  39  2  20  Grass  

132858934  44.337006  -74.809356  CLEAR POND  445  53  12  3  Grass  

 

132859654  44.231728  -74.820742  SILVER LAKE  452  145  45  6  NA  

132859257  44.271450  -74.762131  SAMPSON POND  457  372  27  2  Grass  

132859261  44.263672  -74.768797  EGG POND  466  5  0  1  Grass  

132859085  44.282839  -74.691569  CARTRIDGE HILLS POND 3  472  4  1  7  Grass  

132859280  44.255061  -74.744350  GRASS RIVER FLOW  460  11763  14  2  NA  

132859126  44.267561  -74.639622  CATAMOUNT POND  462  536  41  3  NA  

132859339  44.227006  -74.665178  TOWNLINE POND  466  40  16  15  Grass  

132859255  44.240061  -74.657956  BOOTTREE POND  463  24  6  15  NA  

132859648  44.212283  -74.709069  BURNTBRIDGE POND  490  345  22  2  Grass  

133098522  44.223117  -75.204369  PORTAFERRY LAKE  262  244  32  24  Oswegatchie  

133098794  44.160342  -75.204644  LONG LAKE  331  134  9  6  Oswegatchie  

133098835  44.146731  -75.155753  DRY TIMBER LAKE  424  520  9  8  Oswegatchie  

133099091  44.080064  -75.203528  LITTLE SILVER DAWN LAKE  378  106  3  2  NA  

133099100  44.065619  -75.128803  UNNAMED POND  445  1515  2  1  NA  

133099412  43.961453  -75.044908  LOON HOLLOW POND  607  60  6  12  NA  

133099268  43.995342  -75.049908  BRINDLE POND  539  16  1  2  Oswegatchie  
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133099411  43.958675  -75.009908  BEAR POND  623  238  32  29  Oswegatchie  

133099321  43.972286  -74.955183  WILLYS LAKE (HORSESHOE)  630  156  24  14  NA  

133099276  43.979508  -74.952961  UNNAMED POND  625  40  0  1  Oswegatchie  

133099361  43.995344  -75.200189  ROCK POND  411  6822  8  10  NA  

133098391  44.263117  -75.130203  PARTLOW POND  298  359  7  9  Oswegatchie  

133098458  44.242006  -75.154369  TITUS POND  302  14  1  4  NA  

133098403  44.253117  -75.109089  DODGE POND  307  101  6  7  Oswegatchie  

133098764  44.151453  -75.050750  READWAY POND  424  1  1  2  Oswegatchie  

133098898  44.110897  -75.071025  STREETER LAKE  453  339  28  5  Oswegatchie  

133098933  44.101731  -75.054358  UNNAMED POND  454  1475  4  1  Oswegatchie  

133098922  44.100897  -75.068247  CRYSTAL LAKE  453  22  6  8  Oswegatchie  

133098502  44.189783  -74.925192  UNNAMED POND  456  173  4  2  NA  

167248139  44.214228  -74.986306  UNNAMED(NEWTON FALLS)RES  433  43686  78  10  NA  

167248139  44.214228  -74.986306  UNNAMED(NEWTON FALLS)RES  433  43686  78  10  NA  

133098575  44.195617  -75.001583  BEAVER POND  454  106  11  5  Oswegatchie  

133098510  44.159506  -74.721847  LITTLE DOG POND  556  58  2  1  Oswegatchie  

133098759  44.112839  -74.797961  FISHPOLE POND  524  482  6  6  Oswegatchie  

133098754  44.122283  -74.849631  SIMMONS POND  521  64  7  19  Oswegatchie  

133098761  44.128394  -74.924911  UNNAMED POND (MILL POND)  456  432  3  1  Oswegatchie  

133099041  44.052564  -74.949908  BIG SHALLOW POND  510  177  3  1  Oswegatchie  

133099058  44.048675  -74.952686  LITTLE SHALLOW POND  512  141  3  2  Oswegatchie  

133098913  44.066450  -74.840461  BIG DEER POND  533  160  23  2  Oswegatchie  

133099147  44.026175  -74.904906  OVEN LAKE  611  590  21  12  NA  

133099147  44.026175  -74.904906  OVEN LAKE  611  590  21  12  NA  

133099147  44.017286  -74.904906  GRASSY POND  611  411  12  8  NA  

133099147  44.017286  -74.904906  GRASSY POND  611  411  12  8  NA  

133099140  44.008117  -74.859350  JENKINS POND  549  12  1  6  Oswegatchie  

 

131843092  43.918678  -75.223519  SOFT MAPLE RESERVOIR  392  61268  128  18  NA  

131843830  43.882567  -75.161294  BEAVER LAKE  435  50350  95  9  NA  

131844118  43.858956  -75.170739  FRANCIS LAKE  440  533  55  7  NA  
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131843550  43.871733  -75.093239  UNNAMED POND  500  66  1  2  Black  

131843906  43.853678  -75.098239  UNNAMED POND  512  17  1  2  Black  

131843874  43.854233  -75.093794  UNNAMED POND  500  52  2  2  Black  

131843281  43.886456  -75.108517  MOSHIER RESERVOIR  500  47141  114  23  Black  

131841894  43.932011  -75.053797  SUNSHINE POND  589  215  27  15  NA  

131841662  43.947286  -74.995186  UNNAMED POND  625  47  9  6  Black  

131841569  43.953119  -74.983239  DISMAL POND  621  204  22  5  Black  

131841526  43.944508  -74.888236  UNNAMED POND  515  147  9  2  NA  

131842175  43.893953  -74.817678  TERROR LAKE  618  418  25  4  NA  

131843078  43.870380  -74.952250  WOODS LAKE  607  204  25  10  NA  

131843653  43.834233  -74.917122  SNAKE POND  588  1452  7  7  Black  

131843383  43.841175  -74.892956  TWITCHELL LAKE  625  732  58  10  Black  

131843116  43.854231  -74.870733  LILYPAD POND LOWER  628  88  9  5  Black  

131844565  43.839792  -75.280183  CRYSTAL LAKE  378  207  31  14  Black  

131845121  43.772292  -75.266847  MAHAN POND  387  12  1  4  NA  

131844966  43.780347  -75.222958  NORTH POND  407  184  2  2  Black  

131844924  43.793958  -75.291017  PAYNE LAKE  375  42  7  7  Black  

131844590  43.832292  -75.262406  GOURD POND  357  90  1  1  Black  

131844627  43.815344  -75.181847  MIKES POND  472  59  1  5  Black  

131845681  43.720903  -75.286289  PITCHER POND  364  19  2  8  Black  

131845110  43.733678  -75.017678  UNNAMED POND  559  508  4  1  Black  

131845875  43.684792  -75.275456  BRANTINGHAM LAKE  376  1232  132  23  Black  

131846204  43.639792  -75.262397  GARRIT LAKE  376  156  2  5  Black  

131845717  43.683958  -75.099619  MIDDLE SETTLEMENT LAKE  526  98  16  11  NA  

131845625  43.693403  -75.084342  CEDAR POND  518  702  3  6  Black  

131845587  43.690347  -75.064619  GRASS POND  546  237  5  5  NA  

131845583  43.697847  -75.101842  MIDDLE BRANCH LAKE  494  363  17  5  Black  

131846283  43.624792  -75.246286  UNNAMED POND  376  217  9  2  Black  

131845488  43.694789  -75.007953  WINDFALL POND  522  34288  16  5  Black  

131844983  43.737011  -74.972397  ROUND POND  528  12  4  7  NA  

131844538  43.788956  -74.949622  BIG DIAMOND POND  613  84  3  8  NA  
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131844719  43.756456  -74.916008  LAKE RONDAXE  524  14283  91  10  NA  

131844809  43.749233  -74.901286  FLY POND  565  208  2  3  Black  

131844377  43.781178  -74.852675  MOSS LAKE  536  1315  46  15  Black  

131844130  43.789231  -74.812394  CASCADE LAKE  553  475  40  6  Black  

131844532  43.774789  -74.846561  BUBB LAKE  553  186  18  4  NA  

131844150  43.793400  -74.870731  DART LAKE  536  10757  52  18  NA  

131844009  43.805064  -74.831008  WINDFALL POND  601  44  2  6  Black  

131843856  43.828064  -74.854500  BIG MOOSE LAKE  556  9585  513  21  NA  

131844064  43.811456  -74.882953  WEST POND  585  108  10  5  NA  

 

131843739  43.825622  -74.886011  SQUASH POND  648  41  3  6  NA  

131842612  43.855342  -74.725728  OTTER POND  649  118  5  3  Black  

131842438  43.871731  -74.777397  LOWER SISTER LAKE  588  1598  34  3  NA  

131842438  43.878953  -74.768508  UPPER SISTER LAKE  588  1409  32  4  NA  

131843304  43.830619  -74.807119  CONSTABLE POND  582  945  21  4  NA  

131844592  43.765067  -74.842117  SURPRISE POND  526  15  2  2  Black  

131844242  43.763675  -74.729336  BUG LAKE  614  132  32  24  Black  

131843989  43.770064  -74.712947  EIGHTH LAKE FULTON CHAIN  546  823  123  25  Black  

131845967  43.641736  -75.021281  BLOODSUCKER POND  582  204  3  6  Black  

131845700  43.671456  -74.995450  NICKS LAKE  519  1053  84  5  Black  

131845700  43.673122  -74.986283  UNNAMED POND  519  441  2  2  Black  

131846085  43.620903  -75.029892  UNNAMED POND  493  194  1  2  Black  

131844984  43.713400  -74.812669  LIMEKILN LAKE  576  1393  187  22  NA  

131845383  43.676733  -74.814056  UNNAMED POND  643  33  2  2  NA  

131845343  43.673956  -74.819056  UNNAMED (KETTLE) POND  646  21  3  13  NA  

131845523  43.651178  -74.751833  BEAVER LAKE  559  916  55  5  NA  

131845641  43.636178  -74.738497  SQUAW LAKE  645  177  36  7  NA  

131845751  43.628400  -74.747386  UNNAMED POND  637  36  1  4  Black  

131845836  43.623400  -74.761831  INDIAN LAKE  654  1061  33  11  NA  

131846180  43.566733  -74.792383  UNNAMED POND  722  376  3  1  Black  

131846215  43.562567  -74.812939  TWIN LAKE LOWER  739  75  1  2  NA  
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131846215  43.562567  -74.812383  TWIN LAKE UPPER  740  66  2  5  NA  

131846038  43.582289  -74.750439  CARTER MUDHOLE  674  67  1  3  Black  

131845673  43.618122  -74.641828  TWIN LAKES WEST  810  302  1  1  NA  

131845673  43.617567  -74.641272  TWIN LAKE WEST  810  287  8  7  NA  

131845673  43.620344  -74.635161  TWIN LAKE EAST  811  139  8  3  NA  

131845828  43.600067  -74.662106  BROOK TROUT LAKE  722  177  29  23  NA  

131845255  43.666178  -74.703219  ICEHOUSE POND  566  27  3  13  NA  

131845216  43.669511  -74.699608  HELLDIVER POND  566  85  7  3  Black  

131844990  43.688122  -74.665719  LOST POND  584  2426  9  2  NA  

131845210  43.646733  -74.557936  LOST POND  584  138  4  1  NA  

131846683  43.536736  -75.170444  DEER POND  430  25  4  4  Black  

131846452  43.588403  -75.132947  LOST POND  473  31  1  6  Black  

131846419  43.587014  -75.126003  OTTER LAKE  462  598  56  3  Black  

131846566  43.551458  -75.067667  GULL LAKE  540  212  50  3  NA  

131846593  43.512090  -74.890750  SOUTH LAKE  615  1644  197  18  NA  

131846580  43.522847  -74.947661  NORTH LAKE  555  8126  177  18  NA  

131846146  43.573678  -74.821275  MONUMENT LAKE  759  33  6  2  Black  

50520955  43.233961  -73.848456  BULLHEAD POND  186  28  2  4  Hudson-Hoosic  

47725669  43.270072  -73.949847  UNNAMED POND  314  54  1  1  Sacandaga  

47725761  43.264239  -73.919014  JENNY LAKE  377  805  36  8  Sacandaga  

47726211  43.235628  -73.989294  MINER MILL VLY  477  558  3  2  Sacandaga  

47726908  43.188961  -73.947347  LITTLE LAKE  552  21  1  1  Sacandaga  

 

47723995  43.332847  -74.210411  MIDDLE LAKE  456  66  12  7  Sacandaga  

47723267  43.355347  -74.097353  TENANT LAKE  507  686  28  6  Sacandaga  

47722741  43.399792  -74.156800  WILCOX LAKE  440  281  54  15  Sacandaga  

47724701  43.298403  -74.078742  UNNAMED POND  399  280  8  2  Sacandaga  

47723283  43.371458  -74.245969  WILLIS LAKE  397  139  15  3  NA  

47722841  43.390625  -74.519036  SPY LAKE  505  904  151  9  Sacandaga  

47721675  43.477014  -74.553486  DEER POND  710  59  1  1  Sacandaga  

47721563  43.479792  -74.504875  FALL LAKE  512  4241  10  4  Sacandaga  
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47722273  43.432292  -74.509872  SILVER POND  512  22  1  5  Sacandaga  

47724773  43.302292  -74.585425  JOCKEYBUSH LAKE  599  149  17  11  NA  

47725511  43.273681  -74.544867  TROUT LAKE  503  465  8  4  Sacandaga  

47725595  43.274236  -74.482642  ROSS LAKE  549  28  1  3  Sacandaga  

47720751  43.538678  -74.117356  EAGLE POND  503  156  2  9  Sacandaga  

47719461  43.671453  -74.169308  TWIN POND (LOWER)  638  222  6  1  Sacandaga  

47719523  43.659786  -74.085414  SECOND POND  683  476  18  4  Sacandaga  

47719269  43.689231  -74.074581  THE VLY POND  617  408  9  2  Sacandaga  

47721246  43.507289  -74.419592  SOUND LAKE  527  70  8  3  Sacandaga  

89363837  43.826453  -73.910689  OLIVER POND  455  140  17  4  Upper Hudson  

89363491  43.866175  -73.972361  HEWITT POND  517  751  67  17  Upper Hudson  

89364221  43.785619  -73.818464  MARSH POND  332  115  4  5  NA  

89363585  43.855061  -73.817078  BIG POND  390  639  25  6  Upper Hudson  

89363847  43.825339  -73.710406  HARRISON MARSH POND  314  276  2  3  NA  

89363979  43.812839  -73.704294  SPECTACLE POND (UPPER)  354  164  7  6  Upper Hudson  

89364311  43.775342  -73.659569  CRAB POND  320  130  5  10  Upper Hudson  

89363721  43.843672  -73.677906  GOOSE POND  359  116  27  31  Upper Hudson  

89363549  43.855617  -73.640403  UNNAMED POND  331  764  9  2  NA  

89362641  43.972833  -73.563736  MUD POND  354  35  3  2  NA  

89362411  43.993947  -73.827358  CLEAR POND  583  601  70  24  NA  

167103332  44.065056  -73.811247  DIX POND  680  481  2  1  Upper Hudson  

89362515  43.986167  -73.706797  GERO POND  280  5756  7  3  Upper Hudson  

89362319  44.016722  -73.638186  HOWARD POND  374  58  5  9  Upper Hudson  

89362289  44.019778  -73.632353  BROTHERS POND (LOWER)  381  71  3  6  Upper Hudson  

167100585  43.970611  -73.611517  BLACK BROOK POND (LOWER)  338  316  1  2  NA  

89362321  44.018111  -73.705131  JUG POND  600  45  3  1  Upper Hudson  

89365911  43.491178  -73.912347  BEAR POND  390  215  16  4  Upper Hudson  

89364705  43.722286  -73.936242  BIRD POND  334  951  8  9  NA  

89364879  43.717842  -74.117361  THIRTEENTH LAKE  510  2849  133  15  Upper Hudson  

89363765  43.840897  -74.019028  RANKIN POND  579  142  6  5  Upper Hudson  

89363743  43.844231  -74.024861  LITTLE RANKIN POND  611  265  1  1  Upper Hudson  
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89363785  43.838675  -73.985136  STONY POND  633  298  24  7  NA  

89362763  43.957839  -73.932361  WOLF POND  557  1558  24  5  Upper Hudson  

89363569  43.859231  -74.092922  NATE POND  614  116  8  6  NA  

89364195  43.781175  -74.255428  LAKE ADIRONDACK  506  378  80  6  NA  

 
89365099  43.677008  -74.246256  ROUND POND  566  519  57  3  NA  

89364351  43.771453  -74.212369  LAKE SNOW  515  2814  30  3  Upper Hudson  

{CE57E4DF-187C- 
4AFB-

95231D0345861DE0}  43.649511  -74.389872  LEWEY LAKE  503  6900  149  18  NA  
89365087  43.683675  -74.296258  CROTCHED POND  555  534  26  9  NA  

89365939  43.495069  -74.565986  JESSUP LAKE  735  83  4  6  NA  

89365529  43.592289  -74.427372  MASON LAKE  547  195  37  6  Upper Hudson  

89363601  43.855342  -74.315708  UNNAMED POND  534  35  4  3  Upper Hudson  

89363677  43.853397  -74.329600  BARKER POND  562  34  3  4  Upper Hudson  

89363899  43.829508  -74.436269  CASCADE POND  650  638  14  7  Upper Hudson  

89363813  43.837564  -74.480161  LONG POND  570  26  2  4  NA  

89363781  43.840342  -74.471272  GRASSY POND  564  22  3  1  Upper Hudson  

89365069  43.681733  -74.488767  CARRY POND  649  20  3  5  Upper Hudson  

120023791  43.629233  -74.536269  CEDAR LAKE  744  976  149  12  NA  

120023791  43.627289  -74.551547  BEAVER POND  744  325  35  1  NA  

89363049  43.930619  -74.214319  BATES POND  515  46  2  2  Upper Hudson  

89362727  43.970064  -74.129594  HARRIS LAKE  473  9133  116  12  Upper Hudson  

89362525  43.987920  -74.241820  ARBUTUS LAKE  513  365  48  8  Upper Hudson  

89362643  43.977564  -74.270156  COUNTY LINE FLOW  505  6671  25  2  NA  

89361879  44.111444  -73.988203  LIVINGSTON POND  846  27  1  7  Upper Hudson  

89361867  44.119219  -73.982647  LAKE COLDEN  842  645  15  7  Upper Hudson  

89361863  44.130886  -73.969867  AVALANCHE LAKE  873  115  4  7  NA  

132433284  44.547561  -74.792136  ROCK POND  405  125  7  8  Raquette  

132433360  44.529786  -74.843525  FIVE FALLS RESERVOIR  328  241396  59  12  NA  

132433312  44.538953  -74.768244  LONG POND  405  110  9  6  Raquette  

132433418  44.482842  -74.739911  JOE INDIAN POND  394  5312  138  3  NA  

132433489  44.435064  -74.626011  KETTLE POND  460  21  3  11  NA  

132433630  44.368672  -74.554339  ROCK POND  467  369  17  2  NA  

132433673  44.345894  -74.506558  UNNAMED POND  478  7  1  8  NA  

132433730  44.317006  -74.515447  SUNSET POND  466  352  3  2  Raquette  

132433819  44.310894  -74.721294  UNNAMED POND  444  11  0  3  Raquette  

132433779  44.278114  -74.418778  LEAD POND  483  289  34  4  NA  

132433789  44.278392  -74.424056  UNNAMED POND  488  13  2  2  NA  

132433786  44.292283  -74.488503  NORTH SPECTACLE POND  484  44  3  4  Raquette  
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132435716  44.080339  -74.652953  BEAR POND  568  543  61  8  Raquette  

132435382  44.083950  -74.526558  UNNAMED POND  539  24  0  6  NA  

132435146  44.130617  -74.629064  HORSESHOE LAKE  526  1254  161  5  Raquette  

132435590  44.088672  -74.657675  TROUT POND  542  239  63  25  Raquette  

132435630  44.085339  -74.659064  HIGH POND  573  47  16  17  Raquette  

132436462  44.092561  -74.738236  SECOND POND  531  7158  15  15  NA  

132435369  44.120617  -74.717403  LAKE MARION  607  519  83  47  NA  

132436462  44.065339  -74.803236  TOMAR POND  531  78  2  6  NA  

132436462  44.085339  -74.799628  GRASS POND  531  449  49  11  NA  

 

132434585  44.161728  -74.442944  LITTLE SIMON POND  545  737  58  32  NA  

132433915  44.228392  -74.338497  PANTHER POND  524  45  5  6  Raquette  

132434170  44.206169  -74.344053  ROLL BANK POND  472  30  2  4  Raquette  

132434021  44.217836  -74.317942  UNNAMED (CALKINS) POND  475  20  1  3  NA  

132434641  44.125617  -74.311828  MIDDLE COUNTY LINE POND  518  51  1  5  Raquette  

132434592  44.128394  -74.311828  UPPER COUNTY LINE POND  518  29  1  3  Raquette  

132434565  44.127561  -74.250714  SEWARD POND  625  119  2  2  Raquette  

132434483  44.128947  -74.136819  ROCK POND  710  84  2  1  Raquette  

132433964  44.181164  -74.074042  MOOSE POND  685  975  10  5  NA  

132436516  43.970617  -74.404050  SHAW POND  533  839  10  2  Raquette  

132436973  43.928672  -74.454328  SOUTH POND  538  5445  173  17  Raquette  

132435874  44.029506  -74.451275  MOSQUITO POND  564  46  3  1  Raquette  

132437323  43.861175  -74.556831  MIDDLE SARGENT POND  556  48  5  3  Raquette  

150679585  43.838953  -74.627667  ELDON LAKE  537  208  48  4  Raquette  

132437375  43.834786  -74.543219  UTOWANA LAKE  545  5829  122  7  Raquette  

132437273  43.862008  -74.493772  PINE POND  564  207  2  2  Raquette  

132437129  43.877008  -74.455439  CHUB POND  586  130  5  4  Raquette  

132437679  43.765897  -74.628219  SAGAMORE LAKE  580  4946  68  23  NA  

132437600  43.795064  -74.651000  RAQUETTE LAKE RESERVOIR  570  186  2  3  Raquette  

132437583  43.804786  -74.700447  LOWER BROWNS TRACT POND  538  1236  65  10  Raquette  

132437533  43.813119  -74.666281  FOX POND  537  40  1  10  Raquette  

132437546  43.816731  -74.744061  SHALLOW LAKE  551  1539  108  9  Raquette  

132437639  43.813675  -74.806561  QUEER LAKE  597  155  55  21  NA  
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132437564  43.820342  -74.776839  UNNAMED POND  639  33  4  2  Raquette  

47727871  43.122572  -74.339303  WOODWORTH POND  509  175  14  19  Mohawk  

53542311  43.131739  -74.490697  WEST CAROGA LAKE  443  1413  129  23  Mohawk  

53541987  43.192847  -74.542644  NINE CORNER LAKE  570  205  45  15  Mohawk  

53542099  43.173958  -74.510419  GREEN LAKE  472  636  18  16  Mohawk  

53542015  43.188537  -74.498546  OTTER LAKE  503  361  15  4  NA  

53541567  43.268681  -74.723761  MUD POND  613  34  2  5  Mohawk  

53541203  43.300347  -74.633206  FERRIS LAKE  525  578  48  7  NA  

53541195  43.312014  -74.611536  IRON LAKE  613  74  10  11  NA  

53540805  43.368125  -75.048494  FINCH POND(LK MARGARITE)  419  106  2  2  Mohawk  

53540971  43.342569  -74.965158  TOMKETTLE POND  419  51  4  4  Mohawk  

53541023  43.334792  -74.959047  CURTIS LAKE  393  89  5  11  Mohawk  

53541141  43.322014  -74.783208  UNNAMED POND  564  266  2  1  Mohawk  

53540621  43.426458  -74.725711  WILMURT LAKE  752  273  39  11  Mohawk  

53540671  43.414162  -74.632888  G LAKE  619  413  32  10  NA  

53540537  43.453403  -74.578764  UNNAMED POND  753  61  3  10  NA  

53540327  43.482847  -74.682656  PEA POND  736  17  2  8  Mohawk  

53540525  43.457847  -74.680711  FARMERS VLY  698  71  3  1  Mohawk  

53539965  43.576178  -74.575433  SAMPSON POND  731  155  25  10  Mohawk  

53539963  43.580344  -74.605436  LAURENCE POND  707  100  2  1  Mohawk  

 
135271226  44.459733  -74.259578  BARNUM POND  504  NA  38  3  NA  

132437266  43.857621  -74.449544  BLUE MOUNTAIN LAKE  546  2972  697  31  NA  

132437183  43.918026  -74.704405  BRANDRETH LAKE  573  2298  362  54  NA  

50520473  43.328701  -73.757797  KEENAN RESERVOIR  365  NA  NA  NA  Hudson-Hoosic  

89365509  43.596668  -73.795345  TRIPP LAKE  292  668  20  8  NA  

132876387  44.646400  -74.059998  WOLF POND  460  NA  21  15  Salmon  

53542311  43.124953  -74.480637  EAST CAROGA LAKE  442  1490  94  12  Mohawk  

92083789  43.843056  -73.431944  LAKE GEORGE  66  60347  11537  60  NA  

131844637  43.744534  -74.743195  SEVENTH LAKE  544  NA  385  26  Black  

132876172  44.732592  -73.969758  UPPER CHATEAUGAY LAKE  399  20856  1038  22  Chateaugay-English  

89364961  43.686667  -73.741111  BRANT LAKE  243  NA  616  18  Upper Hudson  

92081293  44.747103  -73.824032  CHAZY LAKE  470  6896  747  21  Lake Champlain  

135270812  44.587254  -74.285718  CLEAR LAKE (DUANE)  475  NA  34  18  St. Regis  

89363335  43.889301  -74.232597  FIFTH LAKE ESSEX CHAIN  489  NA  NA  NA  Upper Hudson  
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129691021  44.333848  -74.403747  FLOODWOOD POND  480  NA  NA  NA  Saranac River  

150679608  44.156502  -74.377998  FOLLENSBY POND  471  NA  393  31  NA  

150679605  43.899994  -74.583313  FORKED LAKE  531  NA  362  23  Raquette  

89366265  43.357700  -73.824402  FOURTH LAKE  192  NA  20  12  Upper Hudson  

131844766  43.758514  -74.840676  FOURTH LAKE  520  NA  831  20  Black  

89365829  43.518681  -74.022278  GARNET LAKE  448  2121  133  NA  Upper Hudson  

47721841  43.464199  -74.315300  GILMAN LAKE  509  NA  19  18  Sacandaga  

89364487  43.765767  -74.254214  LAKE ABANAKEE  487  49953  208  NA  Upper Hudson  

89363797  43.844442  -74.414764  LAKE DURANT  540  6044  117  6  Upper Hudson  

132436556  43.977576  -74.465563  LAKE EATON  523  NA  232  16  Raquette  

131841110  44.002998  -74.763000  LAKE LILA  523  NA  NA  NA  Black  

89366321  43.321389  -73.838333  LAKE LUZERNE  190  NA  42  17  Upper Hudson  

89364839  43.704163  -73.670776  LILY POND  363  NA  NA  NA  Upper Hudson  

92083087  44.165833  -73.566667  LINCOLN POND  314  NA  262  8  Lake Champlain  

150679607  44.070080  -74.330226  LONG LAKE  496  76376  1687  14  Raquette  

89365151  43.680422  -73.860392  LOON LAKE  264  3363  212  11  Upper Hudson  

150563206  44.315412  -74.179529  LOWER SARANAC LAKE  468  32160  870  15  Saranac River  

135270871  44.561601  -74.285843  MEACHAM LAKE  473  NA  NA  NA  St. Regis  

89363811  43.832199  -73.887901  MULLER POND  447  NA  NA  NA  Upper Hudson  

135271203  44.451070  -74.228505  OSGOOD POND  503  1871  209  3  St. Regis  

53542005  43.197327  -74.512693  PINE LAKE  476  1129  67  NA  Mohawk  

120023153  43.413146  -74.546060  PISECO LAKE  506  NA  1153  24  Sacandaga  

131844847  43.737630  -74.871435  QUIVER  530  NA  NA  NA  Black  

150679585  43.852318  -74.651214  RAQUETTE LAKE  537  33147  2183  29  Raquette  

89363797  43.845299  -74.438500  ROCK POND  540  NA  NA  NA  Upper Hudson  

47721625  43.484061  -74.423762  SACANDAGA LAKE  526  NA  651  19  Sacandaga  

47721625  43.483890  -74.366110  SACANDAGA LAKE  526  NA  651  19  Sacandaga  

131843435  43.901120  -75.002096  STILLWATER RESERVOIR  512  NA  2523  10  Black  

133098699  44.179600  -75.119698  SUCKER LAKE  427  NA  NA  NA  Oswegatchie  

115353585  44.484254  -73.863495  TAYLOR POND  424  2892  358  29  Ausable River  

150679595  44.167843  -74.540089  TUPPER LAKE  471  178856  2132  26  Raquette  

150563204  44.324340  -74.321925  UPPER SARANAC LAKE  482  19580  1912  26  Saranac River  

89364607  43.739601  -74.467697  WAKELY POND  639  NA  NA  NA  Upper Hudson  

131846298  43.591999  -74.984703  WOODHULL LAKE  571  NA  440  27  Black  

89363413  43.877690  -74.162300  CHENEY POND  501  NA  7  4  NA  

47725927  43.258760  -74.529390  CHUB LAKE  501  NA  6  6  NA  

115353633  44.414360  -73.719590  EATON POND  295  NA  8  4  NA  

89364599  43.734750  -73.877920  HIDDEN LAKE  387  NA  12  2  NA  

133098740  44.112470  -74.764950  JOHN POND  544  NA  6  8  NA  

129691002  44.294740  -74.158960  KIWASSA LAKE  466  NA  114  13  NA  

131841714  43.911160  -74.774240  LITTLE LILLY POND  596  NA  7  3  NA  
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89364173  43.793560  -73.974440  MINERVA LAKE  370  NA  32  NA  NA  

131842296  43.930980  -75.073250  MOSHER PONDS  568  NA  9  11  NA  

132434537  44.187130  -74.600130  MT ARAB LAKE  506  NA  50  17  NA  

129691039  44.282440  -74.135880  OSEETAH LAKE  466  NA  306  5  NA  

47725041  43.294300  -74.429060  SILVER LAKE  632  NA  32  10  NA  

47722049  43.442970  -74.060560  ST. JOHN LAKE  675  NA  14  11  NA  

53539935  43.589210  -74.563440  WHITNEY LAKE  752  NA  45  12  NA  

47725937  43.254530  -74.314380  WOODS LAKE  417  NA  29  12  NA  

89363021  43.932760  -74.184330  ZACK POND  568  NA  37  10  NA  

53542293  43.161610  -74.537850  CANADA LAKE  472  NA  361  38  NA  

132436462  44.049311  -74.767257  BOG POND  531  NA  NA  NA  NA  

133098825  44.167970  -74.839530  CRANBERRY LAKE  453  NA  2796  10  NA  

89363405  43.880380  -73.586240  EAGLE LAKE  288  NA  171  12  NA  

{CE57E4DF-187C- 

1D0345861DE0} 43.680820  -74.338750  INDIAN LAKE  503  NA  1893  16  NA  
115353775  44.322330  -73.973780  LAKE PLACID  566  NA  797  50  NA  

132436509  44.031990  -74.609790  LITTLE TUPPER LAKE  524  NA  926  11  NA  

132436462  44.073120  -74.763700  LOWS LAKE  531  NA  1136  17  NA  

150563205  44.261980  -74.266760  MIDDLE SARANAC LAKE  469  NA  573  17  NA  

115353807  44.290500  -73.980160  MIRROR LAKE  566  NA  51  17  NA  

89363377  43.886050  -73.692780  PARADOX LAKE  249  NA  378  19  NA  

89364675  43.788270  -73.772980  SCHROON LAKE  246  NA  1723  44  NA  

  

  

  


